Actividad acústica de las aves en hábitats adyacentes en un bosque subantártico: un estudio ecoacústico exploratorio en el Parque Omora, Reserva de la Biosfera Cabo de Hornos, Chile
PDF (English)

Palabras clave

ecoacústica
estructura de la vegetación
paisaje sonoro
refugio acústico
subantártica

Cómo citar

Porlift, F., & Rozzi, R. (2025). Actividad acústica de las aves en hábitats adyacentes en un bosque subantártico: un estudio ecoacústico exploratorio en el Parque Omora, Reserva de la Biosfera Cabo de Hornos, Chile. Anales Del Instituto De La Patagonia -- ISSN 0718-686X, 53. https://doi.org/10.22352/AIP202553008

Resumen

Comprender cómo varían los entornos acústicos entre hábitats es esencial para interpretar la comunicación de las aves en paisajes en rápida evolución. En este estudio ecoacústico exploratorio, examinamos patrones a corto plazo de la actividad acústica de las aves y los niveles de ruido de fondo en tres hábitats adyacentes del Parque Omora, en el sur de Chile: bosque primario, bosque ripario y la entrada de un sendero recreativo. Utilizando 67 grabaciones de un minuto recopiladas en un solo día de muestreo, cuantificamos el número de vocalizaciones aviares, sonidos no aviares e índices acústicos básicos (amplitud máxima, RMS y porcentaje de silencio). El bosque primario exhibió la mayor actividad acústica, con aproximadamente el doble de vocalizaciones por minuto que el sitio ripario y la entrada del sendero. Los niveles de ruido no aviar fueron similares en todos los hábitats, aunque la entrada del sendero mostró picos ocasionales de alta amplitud y el sitio ripario presentó ruido geofónico continuo proveniente del río. Una correlación negativa entre los sonidos no aviares y las vocalizaciones aviares sugiere posibles procesos de enmascaramiento, aunque el alcance temporal limitado del estudio impide la inferencia causal. Nuestros hallazgos resaltan las diferencias de hábitat a pequeña escala que configuran el paisaje sonoro subantártico y subrayan el potencial del monitoreo ecoacústico para la conservación en áreas remotas. Analizamos las limitaciones metodológicas (corta duración del muestreo y falta de mediciones calibradas de la presión sonora) y proponemos líneas de investigación para fortalecer las futuras evaluaciones del ruido antropogénico y ambiental en ecosistemas de altas latitudes.

https://doi.org/10.22352/AIP202553008
PDF (English)

Citas

Bahía, R., Lambertucci, S.A., & Speziale, K.L. (2024). Anthropogenic city noise affects the vocalizations of key forest birds. Biodiversity and Conservation, 33(8-9), 2405-2421. https://doi.org/10.1007/s10531-024-02862-5

Bermúdez-Cuamatzin, E., Ríos-Chelén, A.A., Gil, D., & Garcia, C.M. (2020). Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biology Letters, 7(1), 36-38. https://doi.org/10.1098/rsbl.2010.0437

Blickley, J.L., & Patricelli, G.L. (2010). Impacts of anthropogenic noise on wildlife: Research priorities for the development of standards and mitigation. Journal of International Wildlife Law & Policy, 13(4), 274-292. https://doi.org/10.1080/13880292.2010.524564

Bradbury, J.W., & Vehrencamp, S.L. (2011). Principles of animal communication (2nd ed.). Sinauer Associates.

Brenowitz, E.A., & Beecher, M.D. (2023). Song learning in birds. Frontiers in Ecology and Evolution, 11, 1193903. https://doi.org/10.3389/fevo.2023.1193903

Chen, Z., & Wiens, J.J. (2020). The origins of acoustic communication in vertebrates. Nature Communications, 11, 369. https://doi.org/10.1038/s41467-020-14356-3

Derryberry, E.P., & Luther, D. (2021). What is known—and not known—about acoustic communication in an urban soundscape. Integrative and Comparative Biology, 61(5), 1783-1794. https://doi.org/10.1093/icb/icab151

Dooling, R.J., Buehler, D., Leek, M.R., & Popper, A.N. (2019). The impact of urban and traffic noise on birds. Acoustics Today, 15(3), 19-27. https://doi.org/10.1121/AT.2019.15.3.19

Engel, M.S., Young, R.J., Davies, W.J., Waddington, D., & Wood, M.D. (2024). A systematic review of anthropogenic noise impact on avian species. Current Pollution Reports, 10, 684-709. https://doi.org/10.1007/s40726-024-00329-3

Ernstes, R., & Quinn, J.E. (2016). Variation in bird vocalizations across a gradient of traffic noise as a measure of an altered urban soundscape. Cities and the Environment (CATE), 8(1), 7.

Ey, E., & Fischer, J. (2009). The acoustic adaptation hypothesis: A review of the adaptation hypothesis. Bioacoustics, 19(1-2), 21-48. https://doi.org/10.1080/09524622.2009.9753613

Farina, A. (2019). Ecoacoustics: A quantitative approach to investigate the ecological role of environmental sounds. In A. Farina & S. Gage (Eds.), Ecoacoustics (pp. 45-62). Wiley.

Francis, C.D., Ortega, C.P., & Cruz, A. (2009). Noise pollution changes avian communities and species interactions. Current Biology, 19(16), 1415-1419. https://doi.org/10.1016/j.cub.2009.06.053

Gasc, A., Sueur, J., Jiguet, F., Devictor, V., Grandcolas, P., Burrow, C., Depraetere, M., & Pavoine, S. (2013). Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators, 25, 279-287. https://doi.org/10.1016/j.ecolind.2012.10.009

Gil, D., & Brumm, H. (2014). Acoustic communication in the urban environment: Patterns, mechanisms, and potential consequences of avian song adjustments. In D. Gil & H. Brumm (Eds.), Avian Urban Ecology (pp. 69-83). Oxford University Press.

Guo, S., Wu, W., Liu, Y., Kang, X., & Li, C. (2022). Effects of valley topography on acoustic communication in birds: Why do birds avoid deep valleys in Daqinggou Nature Reserve? Animals, 12(21), 2896. https://doi.org/10.3390/ani12212896

Hao, Z., Zhang, C., Li, L., Gao, B., Wu, R., Pei, N., & Liu, Y. (2024a). Anthropogenic noise and habitat structure shaping dominant frequency of bird sounds along urban gradients. iScience, 27(2), 109056. https://doi.org/10.1016/j.isci.2024.109056

Hao, Z., Zhang, C., Li, L., Sun, B., Luo, S., Liao, J., Wang, Q., Wu, R., Xu, X., Lepczyk, C.A., & Pei, N. (2024b). Can urban forests provide acoustic refuges for birds? Journal of Forestry Research, 35, 33. https://doi.org/10.1007/s11676-023-01689-0

ISO 12913-1:2014. (2014). Acoustics — Soundscape — Part 1: Definition and conceptual framework. International Organization for Standardization.

Jorgewich-Cohen, G., Townsend, S.W., Padovese, L.R., Klein, N., Praschag, P., Ferrara, C.R., ... & Sánchez-Villagra, M.R. (2022). Common evolutionary origin of acoustic communication in choanate vertebrates. Nature Communications, 13(1), 6089. https://doi.org/10.1038/s41467-022-33662-3

Krause, B.L. (1993). The niche hypothesis: A virtual symphony of animal sounds, the origins of musical expression and the health of habitats. The Soundscape Newsletter, 6, 3-6.

Luther, D.A., & Gentry, K. (2013). Sources of background noise and their influence on vertebrate acoustic communication. Behaviour, 150(9-10), 1045-1068. https://doi.org/10.1163/1568539X-00003054

Mogilner, A., & Keren, K. (2009). The shape of motile cells. Current Biology, 19(17), R762-R771. https://doi.org/10.1016/j.cub.2009.06.053

Morton, E.S. (1975). Ecological sources of selection on avian sounds. The American Naturalist, 109(965), 17-34. https://doi.org/10.1086/282971

Muñoz-Pacheco, D., Ramírez-Castillo, R., & Rengifo, L. (2025). Riparian vegetation buffers help conserve bird diversity in urban and peri-urban wetlands of south-central Chile. Birds, 6(1), 8. https://doi.org/10.3390/birds6010008

Nemeth, E., & Brumm, H. (2010). Birds and anthropogenic noise: Are urban songs adaptive? The American Naturalist, 176(4), 465-475. https://doi.org/10.1086/656275

Pijanowski, B.C., Villanueva-Rivera, L.J., Dumyahn, S.L., Farina, A., Krause, B.L., Napoletano, B.M., Gage, S.H., & Pieretti, N. (2011). Soundscape ecology: The science of sound in the landscape. BioScience, 61(3), 203-216. https://doi.org/10.1525/bio.2011.61.3.6

Podos, J. (2010). Acoustic discrimination of sympatric morphs in Darwin's finches: a behavioural mechanism for assortative mating. Philosophical Transactions of the Royal Society B, 365(1543), 1031-1039. https://doi.org/10.1098/rstb.2009.0289

Podos, J., & Webster, M.S. (2022). Ecology and evolution of bird sounds. Current Biology, 32(20), R1100-R1104. https://doi.org/10.1016/j.cub.2022.07.087

Ríos-Chelén, A.A. (2009). Bird song: the interplay between urban noise and sexual selection. Oecologia Brasiliensis, 13(1), 153-164.

Rozzi, R. (2023). Field Environmental Philosophy: Concepts and Case Studies. In R. Rozzi, A. Tauro, T. Wright, N. Avriel-Avni, & R.H. May Jr. (Eds.), Field Environmental Philosophy: Education for Biocultural Conservation. Ecology and Ethics Series Vol 5 (pp. 17-25). Springer. https://doi.org/10.1007/978-3-031-23368-5_2

Rozzi, R., Arango, X., Massardo, F., Anderson, C., Heidinger, K., & Moses, K. (2008). Field environmental philosophy and biocultural conservation. Environmental Ethics, 30, 325-336. https://doi.org/10.5840/enviroethics200830336

Rozzi, R., Armesto, J.J., Gutiérrez, J.R., et al. (2012). Integrating ecology and environmental ethics: Earth stewardship in the southern end of the Americas. BioScience, 62(3), 226-236. https://doi.org/10.1525/bio.2012.62.3.4

Rozzi, R., Massardo, F., Anderson, C., Heidinger, K., & Silander, J.A. Jr. (2006). Ten principles for biocultural conservation at the southern tip of the Americas: the approach of the Omora Ethnobotanical Park. Ecology and Society, 11(1), 43. http://www.ecologyandsociety.org/vol11/iss1/art43/

Rozzi, R., Tauro, A., Avriel-Avni, N., Wright, T., Klaver, I., Berkowitz, A., Brewer, C., & May, R.H. Jr. (2023). Field environmental philosophy: Education for biocultural conservation. In Ecology and Ethics (Vol. 5, pp. 1-19). Springer. https://doi.org/10.1007/978-3-031-23368-5_1

Rozzi, R., et al. (2017). Guía Multi-Étnica de Aves de los Bosques Subantárticos de Sudamérica. Ediciones Universidad de Magallanes – University of North Texas Press.

Ryan, M.J., Rand, W., Hurd, P.L., Phelps, S.M., & Stanley, A. (2003). Generalization in response to mate recognition signals. The American Naturalist, 161(3), 380-394. https://doi.org/10.1086/367588

Slabbekoorn, H., Yeh, P., & Hunt, K. (2007). Sound transmission and song divergence: a comparison of urban and forest acoustics. The Condor, 109(1), 67-78.

Tauro, A., & Rozzi, R. (2025). Biocultural ethics and Earth stewardship: a novel integration to revitalize multiple values of nature. Ecology and Society, 30(3), 35. https://doi.org/10.5751/ES-16362-300335

Tauro, A., Ojeda, J., Caviness, T., Moses, K.P., Moreno-Terrazas, R., Wright, T., Zhu, D., Poole, A.K., Massardo, F., & Rozzi, R. (2021). Field environmental philosophy: a biocultural ethic approach to education and ecotourism for sustainability. Sustainability, 13(8), 4526. https://doi.org/10.3390/su13084526

Uebel, K., Bonn, A., Marselle, M., Dean, A., & Rhodes, J.R. (2025). Understory vegetation can promote bird sounds and reduce traffic noise in urban park soundscapes. Urban Ecosystems, 28, 71. https://doi.org/10.1007/s11252-025-01673-y

Wilkins, M.R., Seddon, N., & Safran, R.J. (2013). Evolutionary divergence in acoustic signals: causes and consequences. Trends in Ecology & Evolution, 28(3), 156-166.

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Descargas

Los datos de descargas todavía no están disponibles.