Identification of Antarctic bacteria with antimicrobial activity isolated from the rhizosphere of Deschampsia antarctica Desv.
PDF (Español (España))


Antarctic bacteria
antimicrobial compounds
rhizospheric bacteria

How to Cite

Orellana, P., Pavón, A., Calisto Ulloa, N. C., Wiese, G., Navarro, L., Cortés-Cortés, P., … Corsini, G. (2022). Identification of Antarctic bacteria with antimicrobial activity isolated from the rhizosphere of Deschampsia antarctica Desv. Anales Del Instituto De La Patagonia, 50.


The sustained decrease in the availability of new antimicrobial molecules for therapeutic use in recent decades and the large increase in microorganisms resistant to these compounds makes it necessary to search for new substances with antimicrobial properties.

Extreme environments, where there is little availability of nutrients, are favorable scenarios to search for this type of compounds, since bacteria compete with other bacteria or other organisms to position themselves in the ecological niche and secrete, associated with their secondary metabolism, a series of molecules that inhibit or kill other microorganisms thus preventing their proliferation.

Our group has a collection of soil bacteria from the Antarctic continent that has ability to grow under conditions of food deprivation and at 4ºC. Due to the extreme habitat where they develop, Antarctic soil bacteria are in constant competition for nutritional resources and therefore develop different strategies to colonize their ecological niche and compete with other microorganisms of the Antarctic microbiota. That is why we propose in this work that bacteria isolated from Antarctic soils are capable of synthesizing (secreting) molecules with the ability to inhibit not only the growth of microorganisms in their environment, but also of bacteria and fungi that are pathogenic for humans.

From a collection of 55 rhizosphere isolates of the Deschampsia antarctica Desv. we identified 11 isolates with the capacity to eliminate human pathogenic bacteria, but no isolate from the collection eliminated the Candida albicans fungus. The 11 Antarctic bacteria with antibacterial capacity are strict aerobic Gram-negative bacilli, with characteristics belonging to the genus Pseudomonas.
PDF (Español (España))


Asencio, G., Lavín, P., Alegría, K., Domínguez, M., Bello, H., González-Rocha, G. & González-Aravena, M. (2014). Antibacterial activity of the Antarctic bacterium Janthinobacterium sp. SMN 33.6 against multi-resistant Gram-negative bacteria. Electronic Journal of Biotechnology, 17(1), 1-5.

Barrientos-Díaz, L., Gidekel, M. & Gutiérrez-Moraga, A. (2008). Characterization of rhizospheric bacteria isolated from Deschampsia antarctica Desv. World Journal of Microbiology and Biotechnology, 24, 2289-2296. https://doi. org/10.1007/s11274-008-9743-1

Bartholomew, J. W. & Mittwer, T. (1952). The Gram stain. Bacteriological Reviews, 16(1), 1-29. br.16.1.1-29.1952

Bentley, S., Chater, K., Cerdeno-Tarraga, A.M., Challis, G., Thomson, N., James, K., Harris, D., Quail, M., Kieser, H., Harper, D., Bateman, A., Brown, S., Chandra, G., Chen, C., Collins, M., Cronin, A., Fraser, A., Goble, A., Hidalgo, J., Hornsby, T., Howarth, S., et al. (2002). Complete genome sequence of the model actinomycete Streptomyces coelicolorA3(2). Nature, 417, 141-147.

Berríos, G., Cabrera, G., Gidekel, M. & Gutiérrez-Moraga, A. (2013). Characterization of a novel antarctic plant growth- promoting bacterial strain and its interaction with Antarctic hair grass (Deschampsia antarctica Desv.). Polar Biology 36(3), 349-362.

Bratchkova, A. & Ivanova, V. (2011). Bioactive metabolites produced by microorganisms collected in Antarctica and the Arctic. Biotechnology and Biotechnological Equipment 25(SUPPL. 4), 1-7.

Cong, B., Yin, X., Deng, A., Shen, J., Tian, Y., Wang, S. & Yang, H. (2020). Diversity of cultivable microbes from soil of the Fildes Peninsula, Antarctica, and their potential application. Frontiers in Microbiology 11:570836. https://doi. org/ 10.3389/fmicb.2020.570836

Corsini, G., Karahanian, E., Tello, M., Fernández, K., Rivero, D., Saavedra, J. M. & Ferrer, A. (2010). Purification and characterization of the antimicrobial peptide microcin N: Properties of the antimicrobial peptide microcin N. FEMS Microbiology Letters, 312(2), 119-125.

Gomila, M., Peña, A., Mulet, M., Lalucat, J. & García-Valdés, E. (2015). Phylogenomics and systematics in Pseudomonas.

Frontiers in Microbiology, 6, 214.

Kållberg, C., Årdal, C., Salvesen Blix, H., Klein, E., Martínez E, Lindbæk, M., Outterson, K., Røttingen J. & Laxminarayan,

R. (2018). Introduction and geographic availability of new antibiotics approved between 1999 and 2014. PLoS ONE, 13(10), e0205166.

Kaltenpoth, M., Göttler, W., Herzner, G. & Strohm, E. (2005). Symbiotic bacteria protect wasp larvae from fungal infestation. Current Biology, 15, 475-479.

Lam, K.S. (2006). Discovery of novel metabolites from marine actinomycetes. Current Opinion in Microbiology, 9, 245-

Lee, L.H., Cheah, Y.K., Mohd-Sidik, S., Ab-Mutalib N.S., Tang, Y.L., Lin, H.P. & Hong, K. (2012). Molecular characterization of Antarctic actinobacteria and screening for antimicrobial metabolite production. World Journal of Microbiology and Biotechnology 28(5), 2125-2137.

Livermore, D. M. (2004). The need for new antibiotics. Clinical Microbiology and Infection, 10, 1-9. https://doi. org/10.1111/j.1465-0691.2004.1004.x.

Manivasagan, P., Venkatesan, J., Sivakumar, K. & Kim, S.K. (2014). Pharmaceutically active secondary metabolites of marine actinobacteria. Microbiology Research, 169(4), 262-278.

Nichols, D.S., Sanderson, K., Buia, A., Van de Kamp, J., Holloway, J., Bowman, J.P., Smith, M., Mancuso, N.C., Nichols, P.D. & McMeekin, T.A. (2002). Bioprospecting and biotechnology in Antarctica. In: J. Jabour-Green y M. Haward (Eds.), The Antarctic: past, present and future (pp. 85-103). Antarctic Cooperative Research Centre, Research Report #28, Hobart.

Núñez-Montero, K., & Barrientos, L. (2018). Advances in Antarctic research for antimicrobial discovery: A comprehensive narrative review of bacteria from Antarctic environments as potential sources of novel antibiotic compounds against human pathogens and microorganisms of industrial importance. Antibiotics, 7(4). https://doi. org/10.3390/antibiotics7040090

Núñez-Montero, K., Lamilla, C., Abanto, M., Maruyama, F., Jorquera, M. A., Santos, A., Martínez-Urtaza, J. & Barrientos,

L. (2019). Antarctic Streptomyces fildesensis So13.3 strain as a promising source for antimicrobials discovery.

Scientific Reports, 9(1).

Okami, Y. & Hotta, K. (1988). Search and discovery of new antibiotics: Good fellow. In: M. Williams y S.T.M. Mordarski (Eds), Actinomycetes in Biotechnology (p. 336). Academic Press Inc.

Orellana, P., Pavón, A., Céspedes, S., Salazar, L., Gutiérrez, A., Castillo, D. & Corsini, G. (2017). Draft genome sequence of Chilean Antarctic Pseudomonas sp. strain K2I15. Genome Announcements, 5(33): e00771-17. https://doi. org/10.1128/genomeA.00771-17

Payne, D.I., Gwynn, M.N., Holmes, D.J. & Pompliano, D.L. (2007). Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nature Review in Drug Discovery, 6, 29-40.

Poblete-Morales, M., Rabert, C., Olea, A. F., Carrasco, H., Calderón, R., Corsini, G. & Silva-Moreno, E. (2020). Genome Sequence of Pseudomonas sp. strain AN3A02, isolated from Rhizosphere of Deschampsia antarctica Desv., with antagonism against Botrytis cinerea. Microbiology Resource Announcement, 9(21): e00320-20. https://

Poulsen, M., Oh, D.C., Clardy, J. & Currie, C.R. (2011). Chemical analyses of wasp-associated Streptomyces bacteria reveal a prolific potential for natural products discovery. PLoS ONE, 6: e16763. journal.pone.0016763

Talbot, G.H., Bradley, J., Edwards, J.E., Gilbert, D., Scheld, M. & Bartlett, J.G. (2006). Bad bugs need drugs an update on the development pipeline from the antimicrobial avail-ability task force of the infectious diseases society of America. Clin. Infect. Dis., 42, 657-668.

Tindall, B.J. (2004). Prokaryotic diversity in the Antarctic: the tip of the iceberg. Microbial Ecology, 47, 271-283. https://

Tomova, I., Stoilova-Disheva, M., Lazarkevich, I., & Vasileva-Tonkova, E. (2015). Antimicrobial activity and resistance to heavy metals and antibiotics of heterotrophic bacteria isolated from sediment and soil samples collected from two Antarctic islands. Frontiers in Life Science, 8(4), 348-357.

Van Trappen, S., Mergaert, J., Van Eygen, S., Dawyndt, P., Cnockaert, M.C. & Swings, J. (2002). Diversity of 746 heterotrophic bacteria isolated from microbial mats from ten antarctic lakes. Systematic and Applied Microbiology, 25(4), 603-610.

Wiedmann, M., Weilmeier, D., Dineen, S. S., Ralyea, R., & Boor, K. J. (2000). Molecular and phenotypic characterization of Pseudomonas spp. isolated from milk. Applied and Environmental Microbiology, 66(5), 2085-2095. https://

Woese, C.R., Kandler, O. & Wheelis, M.L. (1990). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria and Eucarya. Proc. Natl. Acad. Sci. USA 77, 4576-4579.

Zhu, Y.-G., Zhao, Y., Zhu, D., Gillings, M., Penuelas, J., Ok, Y. S., Capon, A. & Banwart, S. (2019). Soil biota, antimicrobial resistance and planetary health. Environment International, 131, 105059.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Paz Orellana, Alequis Pavón, Nancy Cristina Calisto Ulloa, Guillermo Wiese, Laura Navarro; Piedad Cortés-Cortés; Manuel Gidekel, Ana Gutiérrez-Moraga, Gino Corsini


Download data is not yet available.