Acoustic activity of birds across adjacent habitats in a sub-antartic forest: an exploratory ecoacoustic study in omora park
PDF

Keywords

acoustic refuge
ecoacoustics
soundscape
sub-Antarctic
vegetation structure

How to Cite

Porlift, F., & Rozzi, R. (2025). Acoustic activity of birds across adjacent habitats in a sub-antartic forest: an exploratory ecoacoustic study in omora park. Anales Del Instituto De La Patagonia, 53. https://doi.org/10.22352/AIP202553008

Abstract

Understanding how acoustic environments vary across habitats is essential for interpreting avian communication in rapidly changing landscapes. In this exploratory ecoacoustic study, we examined short-term patterns of bird acoustic activity and background sound levels in three adjacent habitats of Omora Park, southern Chile: old-growth forest, riparian forest, and the entrance of a recreational trail. Using 67 one-minute recordings collected across a single sampling day, we quantified the number of avian vocalizations, non-avian sounds, and basic acoustic indices (maximum amplitude, RMS, and percent silence). Old-growth forest exhibited the highest acoustic activity, with approximately twice as many vocalizations per minute as the riparian site and the trail entrance. Non-avian noise levels were similar across habitats, although the trail entrance showed occasional high-amplitude peaks and the riparian site displayed continuous geophonic noise from the river. A negative correlation between non-avian sounds and avian vocalizations suggests potential masking processes, although the limited temporal scope of the study prevents causal inference. Our findings highlight fine-scale habitat differences that shape the sub-Antarctic soundscape and underscore the potential of ecoacoustic monitoring for informing conservation in remote areas. We discuss methodological constraints—short sampling duration, lack of calibrated sound pressure measurements—and propose research directions to strengthen future assessments of anthropogenic and environmental noise in high-latitude ecosystems.

https://doi.org/10.22352/AIP202553008
PDF

References

Bahía, R., Lambertucci, S.A., & Speziale, K.L. (2024). Anthropogenic city noise affects the vocalizations of key forest birds. Biodiversity and Conservation, 33(8-9), 2405-2421. https://doi.org/10.1007/s10531-024-02862-5

Bermúdez-Cuamatzin, E., Ríos-Chelén, A.A., Gil, D., & Garcia, C.M. (2020). Experimental evidence for real-time song frequency shift in response to urban noise in a passerine bird. Biology Letters, 7(1), 36-38. https://doi.org/10.1098/rsbl.2010.0437

Blickley, J.L., & Patricelli, G.L. (2010). Impacts of anthropogenic noise on wildlife: Research priorities for the development of standards and mitigation. Journal of International Wildlife Law & Policy, 13(4), 274-292. https://doi.org/10.1080/13880292.2010.524564

Bradbury, J.W., & Vehrencamp, S.L. (2011). Principles of animal communication (2nd ed.). Sinauer Associates.

Brenowitz, E.A., & Beecher, M.D. (2023). Song learning in birds. Frontiers in Ecology and Evolution, 11, 1193903. https://doi.org/10.3389/fevo.2023.1193903

Chen, Z., & Wiens, J.J. (2020). The origins of acoustic communication in vertebrates. Nature Communications, 11, 369. https://doi.org/10.1038/s41467-020-14356-3

Derryberry, E.P., & Luther, D. (2021). What is known—and not known—about acoustic communication in an urban soundscape. Integrative and Comparative Biology, 61(5), 1783-1794. https://doi.org/10.1093/icb/icab151

Dooling, R.J., Buehler, D., Leek, M.R., & Popper, A.N. (2019). The impact of urban and traffic noise on birds. Acoustics Today, 15(3), 19-27. https://doi.org/10.1121/AT.2019.15.3.19

Engel, M.S., Young, R.J., Davies, W.J., Waddington, D., & Wood, M.D. (2024). A systematic review of anthropogenic noise impact on avian species. Current Pollution Reports, 10, 684-709. https://doi.org/10.1007/s40726-024-00329-3

Ernstes, R., & Quinn, J.E. (2016). Variation in bird vocalizations across a gradient of traffic noise as a measure of an altered urban soundscape. Cities and the Environment (CATE), 8(1), 7.

Ey, E., & Fischer, J. (2009). The acoustic adaptation hypothesis: A review of the adaptation hypothesis. Bioacoustics, 19(1-2), 21-48. https://doi.org/10.1080/09524622.2009.9753613

Farina, A. (2019). Ecoacoustics: A quantitative approach to investigate the ecological role of environmental sounds. In A. Farina & S. Gage (Eds.), Ecoacoustics (pp. 45-62). Wiley.

Francis, C.D., Ortega, C.P., & Cruz, A. (2009). Noise pollution changes avian communities and species interactions. Current Biology, 19(16), 1415-1419. https://doi.org/10.1016/j.cub.2009.06.053

Gasc, A., Sueur, J., Jiguet, F., Devictor, V., Grandcolas, P., Burrow, C., Depraetere, M., & Pavoine, S. (2013). Assessing biodiversity with sound: Do acoustic diversity indices reflect phylogenetic and functional diversities of bird communities? Ecological Indicators, 25, 279-287. https://doi.org/10.1016/j.ecolind.2012.10.009

Gil, D., & Brumm, H. (2014). Acoustic communication in the urban environment: Patterns, mechanisms, and potential consequences of avian song adjustments. In D. Gil & H. Brumm (Eds.), Avian Urban Ecology (pp. 69-83). Oxford University Press.

Guo, S., Wu, W., Liu, Y., Kang, X., & Li, C. (2022). Effects of valley topography on acoustic communication in birds: Why do birds avoid deep valleys in Daqinggou Nature Reserve? Animals, 12(21), 2896. https://doi.org/10.3390/ani12212896

Hao, Z., Zhang, C., Li, L., Gao, B., Wu, R., Pei, N., & Liu, Y. (2024a). Anthropogenic noise and habitat structure shaping dominant frequency of bird sounds along urban gradients. iScience, 27(2), 109056. https://doi.org/10.1016/j.isci.2024.109056

Hao, Z., Zhang, C., Li, L., Sun, B., Luo, S., Liao, J., Wang, Q., Wu, R., Xu, X., Lepczyk, C.A., & Pei, N. (2024b). Can urban forests provide acoustic refuges for birds? Journal of Forestry Research, 35, 33. https://doi.org/10.1007/s11676-023-01689-0

ISO 12913-1:2014. (2014). Acoustics — Soundscape — Part 1: Definition and conceptual framework. International Organization for Standardization.

Jorgewich-Cohen, G., Townsend, S.W., Padovese, L.R., Klein, N., Praschag, P., Ferrara, C.R., ... & Sánchez-Villagra, M.R. (2022). Common evolutionary origin of acoustic communication in choanate vertebrates. Nature Communications, 13(1), 6089. https://doi.org/10.1038/s41467-022-33662-3

Krause, B.L. (1993). The niche hypothesis: A virtual symphony of animal sounds, the origins of musical expression and the health of habitats. The Soundscape Newsletter, 6, 3-6.

Luther, D.A., & Gentry, K. (2013). Sources of background noise and their influence on vertebrate acoustic communication. Behaviour, 150(9-10), 1045-1068. https://doi.org/10.1163/1568539X-00003054

Mogilner, A., & Keren, K. (2009). The shape of motile cells. Current Biology, 19(17), R762-R771. https://doi.org/10.1016/j.cub.2009.06.053

Morton, E.S. (1975). Ecological sources of selection on avian sounds. The American Naturalist, 109(965), 17-34. https://doi.org/10.1086/282971

Muñoz-Pacheco, D., Ramírez-Castillo, R., & Rengifo, L. (2025). Riparian vegetation buffers help conserve bird diversity in urban and peri-urban wetlands of south-central Chile. Birds, 6(1), 8. https://doi.org/10.3390/birds6010008

Nemeth, E., & Brumm, H. (2010). Birds and anthropogenic noise: Are urban songs adaptive? The American Naturalist, 176(4), 465-475. https://doi.org/10.1086/656275

Pijanowski, B.C., Villanueva-Rivera, L.J., Dumyahn, S.L., Farina, A., Krause, B.L., Napoletano, B.M., Gage, S.H., & Pieretti, N. (2011). Soundscape ecology: The science of sound in the landscape. BioScience, 61(3), 203-216. https://doi.org/10.1525/bio.2011.61.3.6

Podos, J. (2010). Acoustic discrimination of sympatric morphs in Darwin's finches: a behavioural mechanism for assortative mating. Philosophical Transactions of the Royal Society B, 365(1543), 1031-1039. https://doi.org/10.1098/rstb.2009.0289

Podos, J., & Webster, M.S. (2022). Ecology and evolution of bird sounds. Current Biology, 32(20), R1100-R1104. https://doi.org/10.1016/j.cub.2022.07.087

Ríos-Chelén, A.A. (2009). Bird song: the interplay between urban noise and sexual selection. Oecologia Brasiliensis, 13(1), 153-164.

Rozzi, R. (2023). Field Environmental Philosophy: Concepts and Case Studies. In R. Rozzi, A. Tauro, T. Wright, N. Avriel-Avni, & R.H. May Jr. (Eds.), Field Environmental Philosophy: Education for Biocultural Conservation. Ecology and Ethics Series Vol 5 (pp. 17-25). Springer. https://doi.org/10.1007/978-3-031-23368-5_2

Rozzi, R., Arango, X., Massardo, F., Anderson, C., Heidinger, K., & Moses, K. (2008). Field environmental philosophy and biocultural conservation. Environmental Ethics, 30, 325-336. https://doi.org/10.5840/enviroethics200830336

Rozzi, R., Armesto, J.J., Gutiérrez, J.R., et al. (2012). Integrating ecology and environmental ethics: Earth stewardship in the southern end of the Americas. BioScience, 62(3), 226-236. https://doi.org/10.1525/bio.2012.62.3.4

Rozzi, R., Massardo, F., Anderson, C., Heidinger, K., & Silander, J.A. Jr. (2006). Ten principles for biocultural conservation at the southern tip of the Americas: the approach of the Omora Ethnobotanical Park. Ecology and Society, 11(1), 43. http://www.ecologyandsociety.org/vol11/iss1/art43/

Rozzi, R., Tauro, A., Avriel-Avni, N., Wright, T., Klaver, I., Berkowitz, A., Brewer, C., & May, R.H. Jr. (2023). Field environmental philosophy: Education for biocultural conservation. In Ecology and Ethics (Vol. 5, pp. 1-19). Springer. https://doi.org/10.1007/978-3-031-23368-5_1

Rozzi, R., et al. (2017). Guía Multi-Étnica de Aves de los Bosques Subantárticos de Sudamérica. Ediciones Universidad de Magallanes – University of North Texas Press.

Ryan, M.J., Rand, W., Hurd, P.L., Phelps, S.M., & Stanley, A. (2003). Generalization in response to mate recognition signals. The American Naturalist, 161(3), 380-394. https://doi.org/10.1086/367588

Slabbekoorn, H., Yeh, P., & Hunt, K. (2007). Sound transmission and song divergence: a comparison of urban and forest acoustics. The Condor, 109(1), 67-78.

Tauro, A., & Rozzi, R. (2025). Biocultural ethics and Earth stewardship: a novel integration to revitalize multiple values of nature. Ecology and Society, 30(3), 35. https://doi.org/10.5751/ES-16362-300335

Tauro, A., Ojeda, J., Caviness, T., Moses, K.P., Moreno-Terrazas, R., Wright, T., Zhu, D., Poole, A.K., Massardo, F., & Rozzi, R. (2021). Field environmental philosophy: a biocultural ethic approach to education and ecotourism for sustainability. Sustainability, 13(8), 4526. https://doi.org/10.3390/su13084526

Uebel, K., Bonn, A., Marselle, M., Dean, A., & Rhodes, J.R. (2025). Understory vegetation can promote bird sounds and reduce traffic noise in urban park soundscapes. Urban Ecosystems, 28, 71. https://doi.org/10.1007/s11252-025-01673-y

Wilkins, M.R., Seddon, N., & Safran, R.J. (2013). Evolutionary divergence in acoustic signals: causes and consequences. Trends in Ecology & Evolution, 28(3), 156-166.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Downloads

Download data is not yet available.