Regeneration and Functional Dynamics of Native Grasslands Disturbed by Hydrocarbon Pipelines in the Magallanes Steppe
PDF

Keywords

Análisis de correspondencia canónica
ductos de hidrocarburos
estepa Magallánica
Festuca gracillima
regeneración natural
restauración ecológica
sucesión secundaria
suelo desnudo

How to Cite

Domínguez, E., Seguich, M., Pérez, S., & Moreno, G. (2025). Regeneration and Functional Dynamics of Native Grasslands Disturbed by Hydrocarbon Pipelines in the Magallanes Steppe. Anales Del Instituto De La Patagonia, 53. https://doi.org/10.22352/AIP202553011

Abstract

Underground hydrocarbon pipelines represent a growing source of disturbance in arid and cold ecosystems of southern South America, yet their long-term ecological impacts remain poorly understood. We evaluated the effects of pipeline construction on vegetation and soil in Festuca gracillima (coironal) grasslands of the Magellanic steppe, Chile. Fourteen pipelines of varying ages (3–14 years) were surveyed using 442 vegetation plots (221 along the pipeline corridor, 221 in reference areas), combined with soil sampling (0–15 cm) for physical and chemical analyses.

Vegetation was strongly affected. Species richness declined significantly in the pipeline corridor (19.6 ± 9.9 vs. 31.0 ± 9.6 species), as did total cover (36.2 ± 19.6% vs. 74.0 ± 6.0%), while bare soil increased markedly. Shannon diversity was slightly higher in disturbed sites (H' = 2.06 ± 0.37 vs. 1.75 ± 0.45), reflecting the proliferation of ruderal and introduced species. SIMPER analysis showed that the decline of native dominants such as Festuca gracillima and Empetrum rubrum, together with the expansion of Poa pratensis, Rumex acetosella, and Taraxacum officinale, explained more than 50% of community dissimilarity. The invasive Hieracium pilosella was unexpectedly more abundant in reference areas, suggesting a preference for intermediate disturbance regimes.

Soil responses were more subtle but not negligible. Most physical properties (bulk density, porosity, water holding capacity) showed no consistent differences between treatments. However, several chemical parameters were significantly altered in disturbed soils, including increases in total nitrogen, available phosphorus, manganese, calcium, magnesium, and nitrate, and a decrease in exchangeable aluminum and clay content, although most changes faded out at short term. Canonical Correspondence Analysis revealed clear floristic segregation along gradients of bare soil, sand content, organic matter, and pH, indicating that soil properties, although moderately affected, shape successional trajectories.

Overall, our results demonstrate that underground pipelines cause long-lasting changes in vegetation structure and composition, even when soil alterations appear modest or transient. Natural regeneration progresses slowly, leading to simplified communities dominated by opportunistic species with protective but low functional value. These findings highlight the need to critically evaluate restoration strategies based on agronomic sowing, and to consider assisted natural regeneration as a more sustainable option for conserving biodiversity, ecosystem function, and soil carbon stocks in arid grasslands.

https://doi.org/10.22352/AIP202553011
PDF

References

Avirmed, O.I., Burke, C., Mobley, M.L., Lauenroth, W.K., & Schlaepfer, D.R. (2014). Natural recovery of soil organic matter in 30–90-year-old abandoned oil and gas wells in sagebrush steppe. Ecosphere, 5, 24. https://doi.org/10.1890/ES13-00272.1

Brehm, T., & Culman, S. (2022). Efectos de la instalación de tuberías en suelos y plantas: Una revisión y síntesis cuantitativa. Agrosistemas, Geociencias y Medio Ambiente, 5, E20312. https://doi.org/10.1002/agg2.20312

Bruun, H.H., Moen, J., Virtanen, R., Grytnes, J.-A., Oksanen, L., & Angerbjörn, A. (2006). Effects of altitude and topography on species richness of vascular plants, bryophytes and lichens in alpine communities. Journal of Vegetation Science, 17, 37–46.

Call, C.A., & Roundy, B.A. (1991). Perspectives and processes in revegetation of arid and semiarid rangelands. Rangeland Ecology & Management/Journal of Range Management Archives, 44(6), 543-549.

Cipriotti, P.A., Rauber, R.B., Collantes, M.B., Braun, K., & Escartín, C. (2009). Hieracium pilosella invasion in the Tierra del Fuego steppe, Southern Patagonia. Biological Invasions, 12(8), 2523–2535. https://doi.org/10.1007/s10530-009-9661-7

CIREN (2010). Determinación de la erosión actual y potencial de los suelos de Chile. Región de Magallanes y Antártica Chilena. Síntesis de Resultados – Centro de Información de Recursos Naturales, Publicación diciembre, Nº 153.

Clarke, K.R. (1993). Non-parametric multivariate analyses of change in community structure. Australian Journal of Ecology, 18, 117-143.

Clarke, K.R., & Green, R.H. (1988). Statistical design and analysis for a 'biological effects' study. Marine Ecology Progress Series, 46, 213-226.

Collantes, M., & Faggi, A.M. (1999). Los humedales del sur de Sudamérica (pp. 15-25). En A. I. Malvárez (Ed.), Tópicos sobre humedales subtropicales y templados de Sudamérica. UNESCO.

Correa, M.N. (1969, 1971, 1978, 1984, 1985, 1988, 1999). Flora Patagónica I-VIII. Colección Científica INTA.

Corstanje, R., Deeks, L.R., Whitmore, A.P., Gregory, A.S., & Ritz, K. (2015). Probing the basis of soil resilience. Soil Use and Management, 31, 72-81.

del Mar González, F., & Pérez, D.R. (2024). How much can assisted natural regeneration contribute to ecological restoration in arid lands? Land Degradation & Development, 35(14), 4163-4172.

Desserud, P., Gates, C.C., Adams, B., & Revel, R.D. (2010). Restoration of foothills rough fescue grassland following pipeline disturbance in southwestern Alberta. Journal of Environmental Management, 91(12), 2763–2770. https://doi.org/10.1016/j.jenvman.2010.08.006

Desserud, P.A., & Naeth, M.A. (2013). Natural recovery of rough fescue (Festuca hallii (Vasey) Piper) grassland after disturbance by pipeline construction in central Alberta, Canada. Natural Areas Journal, 33(1), 91–98. https://doi.org/10.3375/043.033.0111

Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., & Robledo, C. (2011). InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com

Dollenz, O.A. (1991). Capacidad de colonización de Rumex acetosella L. (vinagrillo) en comunidades perturbadas. Anales del Instituto de la Patagonia: Serie Ciencias Naturales, 20(1), 61–67.

Dollenz, O., & Ivanovic, J. (1996). Sucesión secundaria en un pastizal incendiado en el Parque Nacional Torres del Paine, Magallanes, Chile. Anales del Instituto de la Patagonia, Serie Ciencias Naturales, 24, 15–28.

Domínguez D., E., Suárez N., Á., Navarro, E., Romo, J., Alarcón, M., & Seguich, M. (2022). Monitoreo de la cubierta vegetal para evaluar la sucesión secundaria de los pastizales nativos en la línea de flujo ducto Dorado Sur ZG-1 (ex A). Punta Arenas, Chile: Instituto de Investigaciones Agropecuarias. Informativo INIA Kampenaike, N° 123. 4 p. https://hdl.handle.net/20.500.14001/68709

Domínguez, E., & Santis, P. (2021). Plantas naturalizadas e introducidas de la región de Magallanes, asociadas a la actividad silvoagropecuaria y áreas protegidas: atributos de vida, distribución y estatus de invasión. Chloris Chilensis, 24(2), 21-47.

Domínguez, E. (2023). Dinámica de la cubierta vegetal en pastizales nativos de la estepa Magallánica perturbados por la construcción de un ducto de hidrocarburo, Chile. Anales del Instituto de la Patagonia, 51, 1–16.

Elsinger, M.E., Dhar, A., & Naeth, M.A. (2022). Recovery of plains rough fescue grasslands on reclaimed well sites. Journal for Nature Conservation, 66, 126122. https://doi.org/10.1016/j.jnc.2021.126122

Ferrante, D., Álvarez Bento, J., Vivar Miranda, M.E., Oliva G.E., & Utrilla V.R. (2023). Restauración por recolonización de especies nativas en pasturas sembradas en ambientes semiáridos en Patagonia. Semiárida, 33(1), 17-27.

Hammer, Ø., Harper, D., & Ryan, P. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1), 1-9.

Harper, K.A., & Kershaw, G.P. (1997). Soil characteristics of 48-year old borrow pits and vehicle tracks in shrub tundra along the CANOL No. 1 Pipeline Corridor, Northwest Territories, Canada. Arctic and Research, 29(1), 105–111. https://doi.org/10.2307/1551840

Hirsch, P.R., Jhurreea, D., Williams, J.K., Murray, P.J., Scott, T., Misselbrook, T.H., ... & Clark, I.M. (2017). Soil resilience and recovery: rapid community responses to management changes. Plant and Soil, 412(1), 283-297.

Jost, L. (2018). What do we mean by diversity? The path towards quantification. Mètode Science Studies Journal, 9, 55-61.

Kowaljow, E., & Rostagno, C.M. (2013). Enramado y riego como alternativas de rehabilitación de regiones semiáridas afectadas por el tendido de ductos. Ecología Austral, 23(1), 62–69.

Liu, Z., & Zhang, X. (2010). Steppe degradation and rehabilitation in northern China. In Desertification and its control in China (pp. 299-350). Springer, Berlin, Heidelberg.

Luebert, F., & Pliscoff, P. (2017). Pisos vegetacionales. https://www.ide.cl/index.php/flora-y-fauna/item/1524-pisos-vegetacionalesluebert-pliscoff-2017

Ma, W., Tang, S., Dengzeng, Z., Zhang, D., Zhang, T., & Ma, X. (2022). Root exudates contribute to belowground ecosystem hotspots: A review. Frontiers in Microbiology, 13, 937940. https://doi.org/10.3389/fmicb.2022.937940

Moore, D.M., & Goodall, R.N.P. (1977). La flora adventicia de Tierra del Fuego. Anales del Instituto de la Patagonia, 8, 263–274.

Naeth, M.A., Wilkinson, S.R., Locky, D.A., Bryks, C.L., Low, C.H., & Nannt, M.R. (2020). Pipeline Impacts and Recovery of Dry Mixed-Grass Prairie Soil and Plant Communities. Rangeland Ecology & Management, 73(5), 619-628.

Neilsen, D., MacKenzie, A.F., & Stewart, A. (1990). The effects of buried pipeline installation and fertilizer treatments on corn productivity on three eastern Canadian soils. Canadian Journal of Soil Science, 70(2), 169–179. https://doi.org/10.4141/cjss90-019

Ordóñez, I., Radic-Schilling, S., Ivelic-Sáez, J., Muñoz-Arriagada, R., Pinochet, D., Covacevich, N., Valle, S., Tapia, A., Oyaneder, P., Valenzuela, J., Castro, A., & Navarro, M. (2023). Descripción de la vegetación, suelo y tasas de crecimiento de vegas y coironales en la Región de Magallanes. Instituto de Investigaciones Agropecuarias (INIA), Boletín Nº 486, 100 pp. Punta Arenas, Chile.

Perez-Quezada, J.F., Moncada, M., Barrales, P., Urrutia-Jalabert, R., Pfeiffer, M., Herrera, A.F., & Sagardía, R. (2023). How much carbon is stored in the terrestrial ecosystems of the Chilean Patagonia? Austral Ecology, 48(5), 893-903.

Pfeiffer, M., Padarian, J., Osorio, R., Bustamante, N., Olmedo, G.F., Guevara, M., ... & Zagal, E. (2020). CHLSOC: the Chilean Soil Organic Carbon database, a multi-institutional collaborative effort. Earth System Science Data, 12(1), 457-468.

Pisano, E. (1977). Fitogeografía de Fuego-Patagonia Chilena. I. Comunidades vegetales entre las latitudes 52° S y 56° S. Anales del Instituto de la Patagonia, Punta Arenas Chile, 8, 121-250.

Prach, K., & Pyšek, P. (2001). Using spontaneous succession for restoration of human-disturbed habitats: Experience from Central Europe. Ecological Engineering, 17(1), 55–62. https://doi.org/10.1016/S0925-8574(00)00132-4

Radic-Schilling, S., Corti, P., Muñoz-Arriagada, R., Butorovic, N., & Sánchez-Jardón, L. (2021). Ecosistemas de estepa en la Patagonia chilena: Distribución, clima, biodiversidad y amenazas para su manejo sostenible (pp. 223-255). En: C.C. Castilla, J.J. Armesto, & M.J. Martínez-Harms (Eds.), Conservación en la Patagonia chilena: Evaluación del conocimiento, oportunidades y desafíos. Ediciones Universidad Católica.

Ren, S., Cao, Y., & Li, J. (2023). Nitrogen availability constrains grassland plant diversity in response to grazing. Science of The Total Environment, 896, 165273.

Rodríguez, R., & Marticorena, A. (Eds.). (2019). Catálogo de las plantas vasculares de Chile. Universidad de Concepción.

Santibáñez, F., Santibáñez, P., Caroca, C., & González, P. (2017). Atlas agroclimático de Chile. Estado actual y tendencias del clima. Tomo VI: Regiones de Aysén y Magallanes.

Shi, P., Xiao, J., Wang, Y.-F., & Chen, L.D. (2

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2025 Erwin Domínguez, Milenka Seguich, Sebastián Pérez, Gerardo Moreno

Downloads

Download data is not yet available.