Aspectos ecológicos de las comunidades bentónicas en un ambiente proglaciar antártico cambiante
PDF (English)

Palabras clave

Bahía Maxwell
Cambio climático
funcionalidad
resiliencia
gradiente ambiental

Cómo citar

Sepúlveda, T. (2025). Aspectos ecológicos de las comunidades bentónicas en un ambiente proglaciar antártico cambiante. Anales Del Instituto De La Patagonia -- ISSN 0718-686X, 53. https://doi.org/10.22352/AIP202553002

Resumen

Caleta Mariana, un fiordo antártico proglaciar, ha sido afectado por el retroceso glaciar, generando un marcado gradiente ambiental que modula la estructura y composición de las comunidades bentónicas. Dada esta relevancia, la presente revisión tiene por objetivo compilar y analizar la información disponible sobre la ecología, biodiversidad y dinámica funcional de dichas comunidades, identificando patrones de sucesión ecológica, acoplamiento trófico y resiliencia frente al retroceso glaciar. Se realizó una búsqueda sistemática de literatura científica publicada en las últimas tres décadas mediante Google Scholar y Web of Science, aplicando criterios de inclusión que consideraron exclusivamente artículos revisados por pares enfocados en aspectos ecológicos o tróficos del macrobentos. Los estudios revisados revelan que la alta sedimentación y turbidez próximas al glaciar favorecen comunidades pioneras de baja diversidad, mientras que sectores externos presentan ensambles más diversos y funcionalmente complejos. La producción bentónica local y la redundancia funcional emergen como mecanismos primordiales de resiliencia ecológica ante perturbaciones crecientes, con especies funcionalmente redundantes adaptadas a este gradiente de disturbio ambiental, y otras especies clave que sostienen flujos de energía y la biodiversidad local. Asimismo, los contrastes entre Caleta Mariana y otros fiordos
antárticos, como Caleta Potter, evidencian mecanismos ecológicos convergentes bajo distintos grados de disturbio glaciar, donde la producción bentónica local y la redundancia funcional sustentan la resiliencia ecosistémica. Esta revisión sintetiza tres
décadas de investigación en un fiordo antártico representativo y enfatiza la necesidad de monitoreo continuo, metodologías estandarizadas y colaboración internacional para anticipar los umbrales críticos de estabilidad ecológica frente al cambio climático.

https://doi.org/10.22352/AIP202553002
PDF (English)

Citas

Ahn, I.-Y. (1993). Enhanced particle flux through the biodeposition by the Antarctic suspension-feeding bivalve Laternula elliptica in Marian Cove, King George Island. Journal of Experimental Marine Biology and Ecology, 171(1), 75-90. https://doi.org/10.1016/0022-0981(93)90138-2

Ahn, I.-Y., Kang, J.-S., & Kang, S.-H. (1993). Primary food sources for shallow-water benthic fauna in Marian Cove, King George Island during an austral summer. Korean Journal of Polar Research, 4, 67-72.

Ahn, I.-Y., Kim, D.-U., Petti, M. A., Bromberg, S., Elias-Piera, F., Ha, S.-Y., & Gal, J.-K. (2024). Polychaete Assemblages and Trophic Interactions in a Highly Glacier-Influenced Fjord of the West Antarctic Peninsula. https://doi.org/10.2139/ssrn.4827053

Ahn, I.-Y., Moon, H.-W., Jeon, M., & Kang, S.-H. (2016). First record of massive blooming of benthic diatoms and their association with megabenthic filter feeders on the shallow seafloor of an Antarctic Fjord: Does glacier melting fuel the bloom? Ocean Science Journal, 51(2), 273-279. https://doi.org/10.1007/s12601-016-0023-y

Bae, H., Ahn, I.-Y., Park, J., Song, S. J., Noh, J., Kim, H., & Khim, J. S. (2021). Shift in polar benthic community structure in a fast retreating glacial area of Marian Cove, West Antarctica. Scientific Reports, 11(1), 241. https://doi.org/10.1038/s41598-020-80636-z

Barnes, D. K. A. (1999). The influence of ice on polar nearshore benthos. Journal of the Marine Biological Association of the United Kingdom, 79(3), 401-407. https://doi.org/10.1017/S0025315498000514

Barnes, D. K. A., & Souster, T. (2011). Reduced survival of Antarctic benthos linked to climate-induced iceberg scouring. Nature Climate Change, 1(7), 365-368. https://doi.org/10.1038/nclimate1232

Bascur, M., Muñoz-Ramírez, C., Román-González, A., Sheen, K., Barnes, D. K. A., Sands, C. J., Brante, A., & Urzúa, Á. (2020). The influence of glacial melt and retreat on the nutritional condition of the bivalve Nuculana inaequisculpta (Protobranchia: Nuculanidae) in the West Antarctic Peninsula. PLOS ONE, 15(5), e0233513. https://doi.org/10.1371/journal.pone.0233513

Bellwood, D. R., Hoey, A. S., & Choat, J. H. (2003). Limited functional redundancy in high diversity systems: Resilience and ecosystem function on coral reefs. Ecology Letters, 6(4), 281-285. https://doi.org/10.1046/j.1461-0248.2003.00432.x

Benninghoff, W. S. (1987). The Antarctic ecosystem. Environment International, 13(1), 9-14. https://doi.org/10.1016/0160-4120(87)90037-7

Bergagna, L., Lovrich, G., Riccialdelli, L., & Sahade, R. (2024). Blue Carbon in a Sub-Antarctic Marine Protected Area: Current and Future Perspectives. In Review. https://doi.org/10.21203/rs.3.rs-4426813/v1

Bridier, G., Olivier, F., Chauvaud, L., Sejr, M. K., & Grall, J. (2021). Food source diversity, trophic plasticity, and omnivory enhance the stability of a shallow benthic food web from a high Arctic fjord exposed to freshwater inputs. Limnology and Oceanography, 66(S1). https://doi.org/10.1002/lno.11688

Campana, G. L., Zacher, K., Deregibus, D., Momo, F. R., Wiencke, C., & Quartino, M. L. (2018). Succession of Antarctic benthic algae (Potter Cove, South Shetland Islands): Structural patterns and glacial impact over a four-year period. Polar Biology, 41(2), 377-396. https://doi.org/10.1007/s00300-017-2197-x

Chelchowski, M., Balazy, P., Grzelak, K., Grzelak, L., K?dra, M., Legezynska, J., & Kuklinski, P. (2022). Vertical zonation of benthic invertebrates in the intertidal zone of Antarctica (Admiralty Bay, King George Island). Antarctic Science, 34(1), 29-44. https://doi.org/10.1017/S095410202100047X

Choy, E. J., Park, H., Kim, J.-H., Ahn, I.-Y., & Kang, C.-K. (2011). Isotopic shift for defining habitat exploitation by the Antarctic limpet Nacella concinna from rocky coastal habitats (Marian Cove, King George Island). Estuarine, Coastal and Shelf Science, 92(3), 339-346. https://doi.org/10.1016/j.ecss.2011.01.009

Clarke, A., Aronson, R. B., Crame, J. A., Gili, J.-M., & Blake, D. B. (2004). Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarctic Science, 16(4), 559-568. https://doi.org/10.1017/S0954102004002329

Cook, A. J., Holland, P. R., Meredith, M. P., Murray, T., Luckman, A., & Vaughan, D. G. (2016). Ocean forcing of glacier retreat in the western Antarctic Peninsula. Science, 353(6296), 283-286. https://doi.org/10.1126/science.aae0017

Cornwell, W. K., Schwilk, D. W., & Ackerly, D. D. (2006). A trait-based test for habitat filtering: Convex hull volume. Ecology, 87(6), 1465-1471. https://doi.org/10.1890/0012-9658(2006)87[1465:ATTFHF]2.0.CO;2

Försterra, G., Häussermann, V., & Laudien, J. (2017). Animal Forests in the Chilean Fjords: Discoveries, Perspectives, and Threats in Shallow and Deep Waters. In S. Rossi, L. Bramanti, A. Gori, & C. Orejas (Eds.), Marine Animal Forests (pp. 277-313). Springer International Publishing. https://doi.org/10.1007/978-3-319-21012-4_3

Grange, L. J., & Smith, C. R. (2013). Megafaunal Communities in Rapidly Warming Fjords along the West Antarctic Peninsula: Hotspots of Abundance and Beta Diversity. PLoS ONE, 8(12), e77917. https://doi.org/10.1371/journal.pone.0077917

Grebmeier, J. M., & Barry, J. P. (1991). The influence of oceanographic processes on pelagic-benthic coupling in polar regions: A benthic perspective. Journal of Marine Systems, 2(3-4), 495-518. https://doi.org/10.1016/0924-7963(91)90049-Z

Griffin, J. N., Leprieur, F., Silvestro, D., Lefcheck, J. S., Albouy, C., Rasher, D. B., Davis, M., Svenning, J.-C., & Pimiento, C. (2020). Functionally unique, specialised, and endangered (FUSE) species: Towards integrated metrics for the conservation prioritisation toolbox [Preprint]. Ecology. https://doi.org/10.1101/2020.05.09.084871

Guillemot, N., Kulbicki, M., Chabanet, P., & Vigliola, L. (2011). Functional Redundancy Patterns Reveal Non-Random Assembly Rules in a Species-Rich Marine Assemblage. PLoS ONE, 6(10), e26735. https://doi.org/10.1371/journal.pone.0026735

Gutt, J., Starmans, A., & Dieckmann, G. (1996). Impact of iceberg scouring on polar benthic habitats. Marine Ecology Progress Series, 137, 311-316. https://doi.org/10.3354/meps137311

Ha, S.-Y., Ahn, I.-Y., Moon, H.-W., Choi, B., & Shin, K.-H. (2018). Tight trophic association between benthic diatom blooms and shallow-water megabenthic communities in a rapidly deglaciated Antarctic fjord. Estuarine, Coastal and Shelf Science, 218, 258-267. https://doi.org/10.1016/j.ecss.2018.12.020

Henley, S. F., Schofield, O. M., Hendry, K. R., Schloss, I. R., Steinberg, D. K., Moffat, C., Peck, L. S., Costa, D. P., Bakker, D. C. E., Hughes, C., Rozema, P. D., Ducklow, H. W., Abele, D., Stefels, J., Van Leeuwe, M. A., Brussaard, C. P. D., Buma, A. G. J., Kohut, J., Sahade, R., … Meredith, M. P. (2019). Variability and change in the west Antarctic Peninsula marine system: Research priorities and opportunities. Progress in Oceanography, 173, 208-237. https://doi.org/10.1016/j.pocean.2019.03.003

Ingels, J., Aronson, R. B., & Smith, C. R. (2018). The scientific response to Antarctic ice-shelf loss. Nature Climate Change, 8(10), 848-851. https://doi.org/10.1038/s41558-018-0290-y

Iriarte, J. L., González, H. E., & Nahuelhual, L. (2010). Patagonian Fjord Ecosystems in Southern Chile as a Highly Vulnerable Region: Problems and Needs. AMBIO, 39(7), 463-466. https://doi.org/10.1007/s13280-010-0049-9

Isla, E., Gerdes, D., Palanques, A., Gili, J.-M., Arntz, W. E., & König-Langlo, G. (2009). Downward particle fluxes, wind and a phytoplankton bloom over a polar continental shelf: A stormy impulse for the biological pump. Marine Geology, 259(1-4), 59-72. https://doi.org/10.1016/j.margeo.2008.12.011

Jackson, A. L., Inger, R., Parnell, A. C., & Bearhop, S. (2011). Comparing isotopic niche widths among and within communities: SIBER - Stable Isotope Bayesian Ellipses in R: Bayesian isotopic niche metrics. Journal of Animal Ecology, 80(3), 595-602. https://doi.org/10.1111/j.1365-2656.2011.01806.x

Kang, Y.-C., Shim, J., Kim, D., Lee, I.-H., & Chung, H. (1998). Organic balance in a subtidal benthic community of the Marian Cove, King George Island, South Shetland Islands, Antarctica. Korea Journal of Polar Research, 9(1), 63-70.

Kim, B. K., Jeon, M., Joo, H. M., Kim, T.-W., Park, S.-J., Park, J., & Ha, S.-Y. (2021). Impact of Freshwater Discharge on the Carbon Uptake Rate of Phytoplankton During Summer (January–February 2019) in Marian Cove, King George Island, Antarctica. Frontiers in Marine Science, 8, 725173. https://doi.org/10.3389/fmars.2021.725173

Kim, D.-U., Ahn, I.-Y., Noh, J., Lee, C., & Khim, J. S. (2024). Shifts in benthic megafauna communities after glacial retreat in an Antarctic fjord. Communications Earth & Environment, 5(1), 438. https://doi.org/10.1038/s43247-024-01607-0

Kim, Y., Kim, T., Park, S., Ha, S., Park, J., Yoo, J., & Cho, Y. (2023). Properties and Mechanisms of Seawater Exchange in Marian Cove, King George Island, West Antarctic Peninsula. Journal of Geophysical Research: Oceans, 128(12), e2023JC020111. https://doi.org/10.1029/2023JC020111

Ko, Y. W., Lee, D. S., Kim, J. H., Ha, S.-Y., Kim, S., & Choi, H.-G. (2023). The glacier melting process is an invisible barrier to the development of Antarctic subtidal macroalgal assemblages. Environmental Research, 233, 116438. https://doi.org/10.1016/j.envres.2023.116438

Lagger, C., Neder, C., Merlo, P., Servetto, N., Jerosch, K., & Sahade, R. (2021). Tidewater glacier retreat in Antarctica: The table is set for fast-growing opportunistic species, is it? Estuarine, Coastal and Shelf Science, 260, 107447. https://doi.org/10.1016/j.ecss.2021.107447

Lagger, C., Servetto, N., Torre, L., & Sahade, R. (2017). Benthic colonization in newly ice-free soft-bottom areas in an Antarctic fjord. PLOS ONE, 12(11), e0186756. https://doi.org/10.1371/journal.pone.0186756

Layman, C. A., Arrington, D. A., Montaña, C. G., & Post, D. M. (2007). Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology, 88(1), 42-48. https://doi.org/10.1890/0012-9658(2007)88[42:CSIRPF]2.0.CO;2

Levin, S. A., & Lubchenco, J. (2008). Resilience, Robustness, and Marine Ecosystem-based Management. BioScience, 58(1), 27-32. https://doi.org/10.1641/B580107

Llanillo, P. J., Aiken, C. M., Cordero, R. R., Damiani, A., Sepúlveda, E., & Fernández-Gómez, B. (2019). Oceanographic Variability induced by Tides, the Intraseasonal Cycle and Warm Subsurface Water intrusions in Maxwell Bay, King George Island (West-Antarctica). Scientific Reports, 9(1), 18571. https://doi.org/10.1038/s41598-019-54875-8

Mincks, S., Smith, C., & DeMaster, D. (2005). Persistence of labile organic matter and microbial biomass in Antarctic shelf sediments: Evidence of a sediment food bank. Marine Ecology Progress Series, 300, 3-19. https://doi.org/10.3354/meps300003

Momo, F., Kowalke, J., Schloss, I., Mercuri, G., & Ferreyra, G. (2002). The role of Laternula elliptica in the energy budget of Potter Cove (King George Island, Antarctica). Ecological Modelling, 155(1), 43-51. https://doi.org/10.1016/S0304-3800(02)00081-9

Montone, R. C., Alvarez, C. E., Bícego, M. C., Braga, E. S., Brito, T. A. S., Campos, L. S., Fontes, R. F. C., Castro, B. M., Corbisier, T. N., Evangelista, H., Francelino, M., Gomes, V., Ito, R. G., Lavrado, H. P., Leme, N. P., Mahiques, M. M., Martins, C. C., Nakayama, C. R., Ngan, P. V., … Weber, R. R. (2013). Environmental Assessment of Admiralty Bay, King George Island, Antarctica. In C. Verde & G. Di Prisco (Eds.), Adaptation and Evolution in Marine Environments, Volume 2 (pp. 157-175). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-27349-0_9

Moon, H.-W., Wan Hussin, W. M. R., Kim, H.-C., & Ahn, I.-Y. (2015). The impacts of climate change on Antarctic nearshore mega-epifaunal benthic assemblages in a glacial fjord on King George Island: Responses and implications. Ecological Indicators, 57, 280-292. https://doi.org/10.1016/j.ecolind.2015.04.031

Morley, S. A., Souster, T. A., Vause, B. J., Gerrish, L., Peck, L. S., & Barnes, D. K. A. (2022). Benthic Biodiversity, Carbon Storage and the Potential for Increasing Negative Feedbacks on Climate Change in Shallow Waters of the Antarctic Peninsula. Biology, 11(2), 320. https://doi.org/10.3390/biology11020320

Mouillot, D., Bellwood, D. R., Baraloto, C., Chave, J., Galzin, R., Harmelin-Vivien, M., Kulbicki, M., Lavergne, S., Lavorel, S., Mouquet, N., Paine, C. E. T., Renaud, J., & Thuiller, W. (2013). Rare Species Support Vulnerable Functions in High-Diversity Ecosystems. PLoS Biology, 11(5), e1001569. https://doi.org/10.1371/journal.pbio.1001569

Muntadas, A., De Juan, S., & Demestre, M. (2016). Assessing functional redundancy in chronically trawled benthic communities. Ecological Indicators, 61, 882-892. https://doi.org/10.1016/j.ecolind.2015.10.041

Neder, C., Jerosch, K., Pehlke, H., Torre, L., & Sahade, R. (2024). Antarctic benthic species distribution models and compositional analysis in a coastal ecosystem under glacier retreat. Marine Ecology Progress Series, 750, 1-18. https://doi.org/10.3354/meps14731

Pasotti, F., Saravia, L. A., De Troch, M., Tarantelli, M. S., Sahade, R., & Vanreusel, A. (2015). Benthic Trophic Interactions in an Antarctic Shallow Water Ecosystem Affected by Recent Glacier Retreat. PLOS ONE, 10(11), e0141742. https://doi.org/10.1371/journal.pone.0141742

Petsch, C., Rosa, K. K. K. D., Vieira, R., Braun, M. H., Costa, R. M., & Simões, J. C. (2020). The effects of climatic change on glacial, proglacial and paraglacial system at Collins Glacier, King George Island, Antarctica. Investigaciones Geográficas, 103. https://doi.org/10.14350/rig.60153

Pimiento, C., Leprieur, F., Silvestro, D., Lefcheck, J. S., Albouy, C., Rasher, D. B., Davis, M., Svenning, J.-C., & Griffin, J. N. (2020). Functional diversity of marine megafauna in the Anthropocene. Science Advances, 6(16), eaay7650. https://doi.org/10.1126/sciadv.aay7650

Rigolet, C., Thiébaut, E., Brind'Amour, A., & Dubois, S. F. (2015). Investigating isotopic functional indices to reveal changes in the structure and functioning of benthic communities. Functional Ecology, 29(10), 1350-1360. https://doi.org/10.1111/1365-2435.12444

Sahade, R., Lagger, C., Torre, L., Momo, F., Monien, P., Schloss, I., Barnes, D. K. A., Servetto, N., Tarantelli, S., Tatián, M., Zamboni, N., & Abele, D. (2015). Climate change and glacier retreat drive shifts in an Antarctic benthic ecosystem. Science Advances, 1(10), e1500050. https://doi.org/10.1126/sciadv.1500050

Sepúlveda, T., Andrade, C., Almonacid, E., Daza, E., Rivera, C., Vargas, C., & Aldea, C. (2024). Functional traits and ecosystem implications in the Multiple Use Marine Protected Area Almirantazgo Sound: A baseline study of scallop banks and benthic communities. Regional Studies in Marine Science, 79, 103836. https://doi.org/10.1016/j.rsma.2024.103836

Slaymaker, O. (2009). Proglacial, periglacial or paraglacial? Geological Society, London, Special Publications, 320(1), 71-84. https://doi.org/10.1144/SP320.6

Smale, D. A., Barnes, D. K. A., & Fraser, K. P. P. (2007). The influence of ice scour on benthic communities at three contrasting sites at Adelaide Island, Antarctica. Austral Ecology, 32(8), 878-888. https://doi.org/10.1111/j.1442-9993.2007.01776.x

Smith, C. R., Grange, L. J., Honig, D. L., Naudts, L., Huber, B., Guidi, L., & Domack, E. (2012). A large population of king crabs in Palmer Deep on the west Antarctic Peninsula shelf and potential invasive impacts. Proceedings of the Royal Society B: Biological Sciences, 279(1730), 1017-1026. https://doi.org/10.1098/rspb.2011.1496

Smith, C. R., Mincks, S., & DeMaster, D. J. (2006). A synthesis of bentho-pelagic coupling on the Antarctic shelf: Food banks, ecosystem inertia and global climate change. Deep Sea Research Part II: Topical Studies in Oceanography, 53(8-10), 875-894. https://doi.org/10.1016/j.dsr2.2006.02.001

Thrush, S., Hewitt, J., Pilditch, C., & Norkko, A. (2021). Ecology of Coastal Marine Sediments: Form, Function, and Change in the Anthropocene (1st ed.). Oxford University Press. https://doi.org/10.1093/oso/9780198804765.001.0001

Torre, L., Tabares, P. C. C., Momo, F., Meyer, J. F. C. A., & Sahade, R. (2017). Climate change effects on Antarctic benthos: A spatially explicit model approach. Climatic Change, 141(4), 733-746. https://doi.org/10.1007/s10584-017-1915-2

Valdivia, N., Garrido, I., Bruning, P., Piñones, A., & Pardo, L. M. (2020). Biodiversity of an Antarctic rocky subtidal community and its relationship with glacier meltdown processes. Marine Environmental Research, 159, 104991. https://doi.org/10.1016/j.marenvres.2020.104991

Villéger, S., Mason, N. W. H., & Mouillot, D. (2008). New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology, 89(8), 2290-2301. https://doi.org/10.1890/07-1206.1

Weiher, E., & Keddy, P. A. (1995). Assembly Rules, Null Models, and Trait Dispersion: New Questions from Old Patterns. Oikos, 74(1), 159. https://doi.org/10.2307/3545686

Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York. https://ggplot2.tidyverse.org

W?odarska-Kowalczuk, M., Aune, M., Michel, L. N., Zaborska, A., & Lege?y?ska, J. (2019). Is the trophic diversity of marine benthic consumers decoupled from taxonomic and functional trait diversity? Isotopic niches of Arctic communities. Limnology and Oceanography, 64(5), 2140-2151. https://doi.org/10.1002/lno.11174

W?odarska-Kowalczuk, M., Renaud, P., W?s?awski, J., Cochrane, S., & Denisenko, S. (2012). Species diversity, functional complexity and rarity in Arctic fjordic versus open shelf benthic systems. Marine Ecology Progress Series, 463, 73-87. https://doi.org/10.3354/meps09858

Wölfl, A.-C., Lim, C. H., Hass, H. C., Lindhorst, S., Tosonotto, G., Lettmann, K. A., Kuhn, G., Wolff, J.-O., & Abele, D. (2014). Distribution and characteristics of marine habitats in a subpolar bay based on hydroacoustics and bed shear stress estimates—Potter Cove, King George Island, Antarctica. Geo-Marine Letters, 34(5), 435-446. https://doi.org/10.1007/s00367-014-0375-1

Yoo, K.-C., Kyung Lee, M., Il Yoon, H., Il Lee, Y., & Yoon Kang, C. (2015). Hydrography of Marian Cove, King George Island, West Antarctica: Implications for ice-proximal sedimentation during summer. Antarctic Science, 27(2), 185-196. https://doi.org/10.1017/S095410201400056X

Yoon, H. I., Park, B.-K., Domack, E. W., & Kim, Y. (1998). Distribution and dispersal pattern of suspended particulate matter in Maxwell Bay and its tributary, Marian Cove, in the South Shetland Islands, West Antarctica. Marine Geology, 152(4), 261-275. https://doi.org/10.1016/S0025-3227(98)00098-X

Zenteno-Devaud, L., Aguirre-Martinez, G. V., Andrade, C., Cárdenas, L., Pardo, L. M., González, H. E., & Garrido, I. (2022). Feeding Ecology of Odontaster validus under Different Environmental Conditions in the West Antarctic Peninsula. Biology, 11(12), 1723. https://doi.org/10.3390/biology11121723

Zwerschke, N., Sands, C. J., Roman-Gonzalez, A., Barnes, D. K. A., Guzzi, A., Jenkins, S., Muñoz-Ramírez, C., & Scourse, J. (2022). Quantification of blue carbon pathways contributing to negative feedback on climate change following glacier retreat in West Antarctic fjords. Global Change Biology, 28(18), 5450-5464. https://doi.org/10.1111/gcb.16304

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.

Descargas

Los datos de descargas todavía no están disponibles.