Stability and complexity-stability relationship is different in empirical food webs according to the type of ecosystem
PDF (Español (España))

Keywords

prey-predator interactions
modularity
Quasi-Sign Stability
freshwater ecosystem
marine ecosystem
terrestrial ecosystem

How to Cite

Marina, T. I., & Colbrunn, N. (2023). Stability and complexity-stability relationship is different in empirical food webs according to the type of ecosystem. Anales Del Instituto De La Patagonia, 51. https://doi.org/10.22352/AIP202351007

Abstract

Food webs describe the predator-prey interactions that occur in a given habitat. They are useful tools for analyzing complexity and stability, as well as the relationship between these properties, in natural ecosystems. In this work we studied stability, measured as connectance ($C=L/S^2$, where S is the number of species and L the number of interactions), and the complexity-stability relationship in more than 300 empirical food webs considering a wide range of complexity and a variety of ecosystems. For this we considered two indicators of stability, modularity and the 'Quasi-Sign Stability' index, which we evaluated generally, and particularly for freshwater, marine and terrestrial ecosystems. Our results show significant differences in the stability indicators analyzed according to the type of ecosystem. In addition, the complexity-stability relationship was different not only according to the stability indicator considered, but also the type of ecosystem. In this sense, we suggest that it is essential to consider the multidimensionality of stability when evaluating it specifically and in the context of the complexity-stability relationship in food webs, as well as the type of ecosystem.

https://doi.org/10.22352/AIP202351007
PDF (Español (España))

References

Allesina, S., & Pascual, M. (2008). Network structure, predatorprey modules, and stability in large food webs. Theoretical Ecology, 1(1), 55–64. https://doi.org/10.1007/s12080-007-0007-8

Allesina, S., & Tang, S. (2015). The stabilitycomplexity relationship at age 40: A random matrix perspective. Population Ecology, 57(1), 63–75. https://doi.org/10.1007/s10144-014-0471-0

Blanchette, M. L., Davis, A. M., Jardine, T. D., & Pearson, R. G. (2014). Omnivory and opportunism characterize food webs in a large dry-tropics river system. Freshwater Science, 33(1), 142–158. https://doi.org/10.1086/674632

Briand, F., & Cohen, J. (1987). Environmental Correlates of Food Chain Length | Science. https://www.science.org/doi/abs/10.1126/science.3672136.

Brose, U., Archambault, P., Barnes, A. D., Bersier, L.-F., Boy, T., Canning-Clode, J., Conti, E., Dias, M., Digel, C., Dissanayake, A., Flores, A. A. V., Fussmann, K., Gauzens, B., Gray, C., Häussler, J., Hirt, M. R., Jacob, U., Jochum, M., Kéfi, S., … Iles, A. C. (2019). Predator traits determine food-web architecture across ecosystems. Nature Ecology & Evolution, 3(6), 919–927. https://doi.org/10.1038/s41559-019-0899-x

Brose, U., & et. al. (2018). GlobAL daTabasE of traits and food Web Architecture (GATEWAy) v.1.0. iDiv Data Repository.

Cebrian, J. (2004). Role of first-order consumers in ecosystem carbon flow. Ecology Letters, 7(3), 232–240. https://doi.org/10.1111/j.1461-0248.2004.00574.x

Cebrian, J., & Lartigue, J. (2004). Patterns of Herbivory and Decomposition in Aquatic and Terrestrial Ecosystems. Ecological Monographs, 74(2), 237–259. https://doi.org/10.1890/03-4019

Cohen, J. E., & Stephens, D. W. (1978). Food Webs and Niche Space. Princeton University Press.

Csardi, & Nepusz. (2006). The igraph software package for complex network research.

Digel, C., Curtsdotter, A., Riede, J., Klarner, B., & Brose, U. (2014). Unravelling the complex structure of forest soil food webs: Higher omnivory and more trophic levels. Oikos, 123(10), 1157–1172. https://doi.org/10.1111/oik.00865

Dodge, Y. (2008). Kruskal-wallis test. In The concise encyclopedia of statistics (pp. 288–290). Springer New York.

Domínguez-García, V., Dakos, V., & Kéfi, S. (2019). Unveiling dimensions of stability in complex ecological networks. Proceedings of the National Academy of Sciences, 116(51), 25714–25720. https://doi.org/10.1073/pnas.1904470116

Donohue, I., Hillebrand, H., Montoya, J. M., Petchey, O. L., Pimm, S. L., Fowler, M. S., Healy, K., Jackson, A. L., Lurgi, M., McClean, D., O’Connor, N. E., O’Gorman, E. J., & Yang, Q. (2016). Navigating the complexity of ecological stability. Ecology Letters, 19(9), 1172–1185. https://doi.org/10.1111/ele.12648

Dunne, J. A., & Williams, R. J. (2009). Cascading extinctions and community collapse in model food webs. Philosophical Transactions of the Royal Society B: Biological Sciences, 364(1524), 1711–1723. https://doi.org/10.1098/rstb.2008.0219

Dunne, J. A., Williams, R. J., & Martinez, N. D. (2002). Food-web structure and network theory: The role of connectance and size. Proceedings of the National Academy of Sciences, 99(20), 12917–12922. https://doi.org/10.1073/pnas.192407699

Frelat, R., Kortsch, S., Kröncke, I., Neumann, H., Nordström, M. C., Olivier, P. E. N., & Sell, A. F. (2022). Food web structure and community composition: A comparison across space and time in the North Sea. Ecography, 2022(2). https://doi.org/10.1111/ecog.05945

Gilbert, A. J. (2009). Connectance indicates the robustness of food webs when subjected to species loss. Ecological Indicators, 9(1), 72–80. https://doi.org/10.1016/j.ecolind.2008.01.010

Grilli, J., Rogers, T., & Allesina, S. (2016). Modularity and stability in ecological communities. Nature Communications, 7(1), 12031. https://doi.org/10.1038/ncomms12031

Guimerà, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex metabolic networks. Nature, 433(7028), 895–900. https://doi.org/10.1038/nature03288

Jacquet, C., Moritz, C., Morissette, L., Legagneux, P., Massol, F., Archambault, P., & Gravel, D. (2016). No complexitystability relationship in empirical ecosystems. Nature Communications, 7(1), 12573. https://doi.org/10.1038/ncomms12573

Kortsch, S., Primicerio, R., Fossheim, M., Dolgov, A. V., & Aschan, M. (2015). Climate change alters the structure of arctic marine food webs due to poleward shifts of boreal generalists. Proceedings of the Royal Society B: Biological Sciences, 282(1814), 20151546. https://doi.org/10.1098/rspb.2015.1546

Krause, A. E., Frank, K. A., Mason, D. M., Ulanowicz, R. E., & Taylor, W. W. (2003). Compartments revealed in food-web structure. Nature, 426(6964), 282–285. https://doi.org/10.1038/nature02115

Landi, P., Minoarivelo, H. O., Brännström, Å., Hui, C., & Dieckmann, U. (2018). Complexity and stability of ecological networks: A review of the theory. Population Ecology, 60(4), 319–345. https://doi.org/10.1007/s10144-018-0628-3

Lenth, R. V. (2022). Emmeans: Estimated Marginal Means, aka Least-Squares Means.

Marina, T. I., Saravia, L. A., Cordone, G., Salinas, V., Doyle, S. R., & Momo, F. R. (2018). Architecture of marine food webs: To be or not be a “small-world.” PLOS ONE, 13(5), e0198217. https://doi.org/10.1371/journal.pone.0198217

Martinez, N. D. (1992). Constant Connectance in Community Food Webs. The American Naturalist, 139(6), 1208–1218. https://doi.org/10.1086/285382

May, R. (1973). Stability and complexity in model ecosystems. Princeton University Press.

McCann, K. S. (2000). The diversitystability debate. Nature, 405(6783), 228–233. https://doi.org/10.1038/35012234

Montoya, J. M., Rodríguez, M. A., & Hawkins, B. A. (2003). Food web complexity and higher-level ecosystem services. Ecology Letters, 6(7), 587–593. https://doi.org/10.1046/j.1461-0248.2003.00469.x

Mougi, A. (2022). Predator interference and complexitystability in food webs. Scientific Reports, 12(1), 2464. https://doi.org/10.1038/s41598-022-06524-w

Naeem, S., & Li, S. (1997). Biodiversity enhances ecosystem reliability. Nature, 390(6659), 507–509. https://doi.org/10.1038/37348

Namba, T. (2015). Multi-faceted approaches toward unravelling complex ecological networks. Population Ecology, 57(1), 3–19. https://doi.org/10.1007/s10144-015-0482-5

Nowlin, W. H., Vanni, M. J., & Yang, L. H. (2008). Comparing Resource Pulses in Aquatic and Terrestrial Ecosystems. Ecology, 89(3), 647–659. https://doi.org/10.1890/07-0303.1

Pace, M. L., Cole, J. J., Carpenter, S. R., Kitchell, J. F., Hodgson, J. R., Van de Bogert, M. C., Bade, D. L., Kritzberg, E. S., & Bastviken, D. (2004). Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature, 427(6971), 240–243. https://doi.org/10.1038/nature02227

Paine, R. T. (1966). Food Web Complexity and Species Diversity. The American Naturalist, 100(910), 65–75. https://doi.org/10.1086/282400

Pascual, M., & Dunne, J. A. (2005). Ecological Networks: Linking Structure to Dynamics in Food Webs. Oxford University Press.

Perkins, D. M., Hatton, I. A., Gauzens, B., Barnes, A. D., Ott, D., Rosenbaum, B., Vinagre, C., & Brose, U. (2022). Consistent predator-prey biomass scaling in complex food webs. Nature Communications, 13(1), 4990. https://doi.org/10.1038/s41467-022-32578-5

Rodriguez, I. D., Marina, T. I., Schloss, I. R., & Saravia, L. A. (2022). Marine food webs are more complex but less stable in sub-Antarctic (Beagle Channel, Argentina) than in Antarctic (Potter Cove, Antarctic Peninsula) regions. Marine Environmental Research, 174, 105561. https://doi.org/10.1016/j.marenvres.2022.105561

Rodríguez-Flórez, C. N., Paczkowska, J., Martín, J., Gil, M. N., Flores-Melo, X., & Malits, A. (2023). Terrigenous dissolved organic matter input and nutrient-light-limited conditions on the winter microbial food web of the Beagle Channel. Journal of Marine Systems, 103860. https://doi.org/10.1016/j.jmarsys.2023.103860

Saravia, L. A. (2022). Multiweb: Ecological network analyses including multiplex networks.

Shurin, J. B., Gruner, D. S., & Hillebrand, H. (2005). All wet or dried up? Real differences between aquatic and terrestrial food webs. Proceedings of the Royal Society B: Biological Sciences, 273(1582), 1–9. https://doi.org/10.1098/rspb.2005.3377

Stouffer, D. B., & Bascompte, J. (2011). Compartmentalization increases food-web persistence. Proceedings of the National Academy of Sciences, 108(9), 3648–3652. https://doi.org/10.1073/pnas.1014353108

Team, R. C. (2022). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing.

Thompson, R. M., Dunne, J. A., & Woodward, G. (2012). Freshwater food webs: Towards a more fundamental understanding of biodiversity and community dynamics. Freshwater Biology, 57(7), 1329–1341. https://doi.org/10.1111/j.1365-2427.2012.02808.x

Thompson, R. M., Hemberg, M., Starzomski, B. M., & Shurin, J. B. (2007). Trophic Levels and Trophic Tangles: The Prevalence of Omnivory in Real Food Webs. Ecology, 88(3), 612–617. https://doi.org/10.1890/05-1454

Wickham, H., François, R., Henry, L., & Müller, K. (2022). Dplyr: A Grammar of Data Manipulation.

Wilkinson, G. N., & Rogers, C. E. (1973). Symbolic Description of Factorial Models for Analysis of Variance. Journal of the Royal Statistical Society. Series C (Applied Statistics), 22(3), 392–399. https://doi.org/10.2307/2346786

Windsor, F. M., van den Hoogen, J., Crowther, T. W., & Evans, D. M. (2023). Using ecological networks to answer questions in global biogeography and ecology. Journal of Biogeography, 50(1), 57–69. https://doi.org/10.1111/jbi.14447

Yodzis, P., & Innes, S. (1992). Body Size and Consumer-Resource Dynamics. The American Naturalist, 139(6), 1151–1175. https://doi.org/10.1086/285380

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2023 Tomás Ignacio Marina, Nathan Colbrunn

Downloads

Download data is not yet available.