Assessing the accuracy of ocean tide models by using variance of residuals of satellite sea level heights in the Patagonian shelf
PDF (Español (España))


global tide models
Patagonian shelf tide
satellite heights
tide predictions
residuals of sea level heights
minor constituents

How to Cite

de Azkue, M. F., D’Onofrio, E. E., & Jacobs, A. (2022). Assessing the accuracy of ocean tide models by using variance of residuals of satellite sea level heights in the Patagonian shelf. Anales Del Instituto De La Patagonia, 50.


This work proposes to compare the astronomical tidal predictions obtained by using the totality of the constituents provided by seven global tide models and by the Center for Topographic studies of the Ocean and Hydrosphere (CTOH). To quantify this comparison, the variance of residuals of satellite sea level heights are computed from 1992 to 2019, for each model and CTOH. As a case study, we focus on the Patagonian shelf. It is found that the most accurate tidal predictions are obtained when using FES2014 model and CTOH harmonic constants. It is also observed that the decrease in variance values is due to the addition of certain minor constituents. As an example, in the case of CTOH, a location yields a reduction of more than 57% in the variance values when 9 minor constituents are added to the nine common ones. Likewise, in the case of FES2014, variance reduction over this same location is more than 56% by incorporating 14 minor constituents. Finally, a comparison of the amplitudes and phases values of the common constituents among models and the CTOH shows that these values are practically the same. However, when comparing predictions, very dissimilar results are obtained among models.
PDF (Español (España))


Andersen, O.B. (1999). Shallow water tides in the Northwest European shelf region from TOPEX/POSEIDON altimetry.

Journal of Geophysical Research, 104, 7729–7741.

Bhagawati, C., Pandey, S., Dandapat, S., & Chakraborty, A. (2018). Dynamical significance of tides over the Bay of Bengal. Dynamics of Atmospheres and Oceans, 82, 89-106.

Birol, F., Fuller, N., Lyard, F., Cancet, M., Niño, F., Delebecque, & C., Fleury S. (2017). Coastal Applications from Nadir Altimetry: Example of the X-TRACK Regional Products. Advances in Space Research, 59, 936–953. https://

Byun D.S. & Hart D.E. (2019). On robust multi-year tidal prediction using T_Tide. Ocean Science Journal, 54, 657–671.

Carrère, L., Faugère, Y. & Ablain, M. (2016). Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis. Ocean Science, 12, 825-842. os-12-825-2016.

Cartwright, D.E. (1985). Tidal prediction and modern time scales. International Hydrographic Review. LXII (1), 127-138. Chelton, D.B., Ries, J.C., Haines, B.J., Fu, L-L., Callahan, P.S. (2001). Satellite Altimetry. In: Fu, L.-L. and Cazenave, A. (Eds), Satellite Altimetry and Earth Sciences: A Handbook of Techniques and Applications. International Geophysics

Series (pp 1-131), Volume 69, Academic Press, San Diego, California, USA.

D’Onofrio, E,E., Oreiro, F.A., Grismeyer, W.H., Fiore, M.M. E. (2016). Predicciones precisas de marea astronómica calculadas a partir de altimetría satelital y observaciones costeras para la zona de Isla Grande de Tierra del Fuego, Islas de los Estados y Canal de Beagle. GEOACTA 40(2), 60-75. geoacta/article/view/5354

de Azkue, M.F. (2017). Caracterización de la marea en el Atlántico Sudoccidental utilizando datos de altimetría satelital y su comparación con soluciones de modelación numérica. Tesis de Licenciatura. Buenos Aires, Argentina: Departamento de Ciencias de la Atmósfera y los Océanos, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires.

de Azkue, M.F., D’Onofrio, E.E., & Banegas, L. (2021). Development of an empirical chart datum model for a region of the Southwest Atlantic Ocean. Ocean and Coastal Research, 69, 1-11, 2824069.21-028mfda.

Desai, S. D. &. Ray, R. D. (2014). Consideration of tidal variations in the geocenter on satellite altimeter observations of ocean tides. Geophysical Research Letters, 41, 2454–2459,

Desportes, E., Obligis, E., & Eymard, L. (2007). On the wet tropospheric correction for altimetry in coastal regions.

IEEE Trans Geoscience and Remote Sensing, 45(7), 2139–2142, Egbert, G. D. & Ray, R. D. (2001). Estimates of M2 tidal energy dissipation from TOPEX/Poseidon altimeter data. Journal of Geophysical Research Oceans, 106(C10), 22475–22502,

Egbert, G.D. & Erofeeva, S.Y. (2002). Efficient inverse modeling of barotropic ocean tides. Journal of Atmospheric and Oceanic Technology, 19, 183-204, 0426(2002)019.

Erofeeva, S., Padman, L., & Howard, L. (2020). Tide Model Driver (TMD) version 2.5, Toolbox for Matlab (https://www., GitHub. Retrieved [10-07-2022].

Glorioso P.D. (2000). Patagonian shelf 3D tide and surge model. Journal of Marine Systems, 24, 141–151.

Glorioso, P.D. & Flather, R.A. (1998). The Patagonian Shelf tides. Progress in Oceanography, 40, 1-4: 263-283, https:// 10.1016/S0079-6611(98)00004-4.

Glorioso, P.D. & Simpson, J.H. (1994). Numerical modelling of the M2 tide on the northern Patagonian Shelf. Continental Shelf Research, 14, 267-278, 10.1016/0278-4343(94)90016-7.

Green, J. A. M., Green, C. L., Bigg, G. R., Rippeth, T. P., Scourse, J. D., & Uehara, K. (2009). Tidal mixing and the meridional overturning circulation from the Last Glacial Maximum. Geophysical Research Letters, 36, L15603.

Haigh, I.D., Pickering, M.D., Green, J.A.M., Arbic, B.K., Arns, A., Dangendorf, S., Hill, D., Horsburgh, K., Howard, T., Idier,

D., Jay, D.A., Janicke, L., Lee, S.B., Muller, M., Schindelegger, M., Talke, S.A., Wilmes, S.B., & Woodworth, P.L. (2019). The Tides They Are a-Changin: A comprehensive review of past and future nonastronomical changes in tides, their driving mechanisms and future implications. Reviews of Geophysics, 58(1), 10.1029/2018RG000636.

Hart-Davis, M.G., Piccioni, G., Dettmering, D., Schwatke, C., Passaro, & M., Seitz, F. (2021a). EOT20: a global ocean tide model from multi-mission satellite altimetry. Earth System Science Data, 13, essd-13-3869-2021.

Hart-Davis, M.G., Dettmering, D., Sulzbach, R., Thomas, M., Schwatke, y C., Seitz, F. (2021b). Regional Evaluation of Minor Tidal Constituents for Improved Estimation of Ocean Tides. Remote Sensing in Earth Systems Sciences, 13, 3310,

Holgate S.J., Matthews, A., Woodworth, P.L., Rickards, L.J., Tamisiea, M.E., Bradshaw, E., Foden P.R., Gordon, K.M., Jevrejeva,

S. & Pugh, J. (2013). New data systems and products at the Permanent Service for Mean Sea Level. Journal of Coastal Research, 29(3), 493–504.

Kang, D. (2012). Barotropic and Baroclinic Tidal Energy. In: A. Z. Ahmed (Ed.), Energy Conservation, (pp 57-72). INTECH, London, United Kingdom,

Koop, R. & Rummel, R. The Future of Satellite Gravimetry. Report from the Workshop on The Future of Satellite Gravimetry. 12-13 April 2007, ESTEC, Noordwijk, The Netherlands.

Lee, T.-L. (2004). Back-propagation neural network for long-term tidal predictions. Ocean Engineering, 31(2), 225–238,

Lee, T.L., Makarynskyy, O., Shao C.C. (2007). A Combined Harmonic Analysis–Artificial Neural Network Methodology for Tidal Predictions. Journal of Coastal Research, 233, 764-770, 622 0492.1.

Lyard, F., Lefevre, T., Francis, O. (2006). Modelling the global ocean tides: Modern insights from FES2004. Ocean Dynamics, 56, 394–415, 006-0086-x.

Matte, P., Jay, D.A., & Zaron, E.D. (2013). Adaptation of Classical Tidal Harmonic Analysis to Nonstationary Tides with Application to River Tides. Journal of Atmospheric and Oceanic Technology, 569-589, JTECH-D-12-00016.1.

Middleton, J.H. & Bode, L. (1987). Poincaré waves obliquely incident to a continental shelf. Continental Shelf Research,

, 177-190.

Moreira D., Simionato, C.G., & Dragani, W (2011). Modeling ocean tides and their energetics in the North Patagonia Gulfs of Argentina. Journal of Coastal Research, 27(1), 87–102.

Munk, W.H. y Cartwright, D.E. (1966). Tidal spectroscopy and prediction. The Royal Society Publishing. 10.1098/rsta.1966.0024.

Oreiro, F.A., D’Onofrio, E.E., Grismeyer, W.H., Fiore, M.E.E., & Saraceno, M. (2014). Comparison of tide model outputs for the northern region of the Antarctic Peninsula using satellite altimeters and tide gauge data. Polar Science, 8 (1), 10-23.

Palma, E.D., Matano, R.P., & Piola, A.R. (2004). A numerical study of the Southwestern Atlantic Shelf circulation: Barotropic response to tidal and wind forcing. Journal of Geophysical Research, 109, C08014. https://doi. org/10.1029/2004JC002315.

Palma, E.D., Matano, R. P., Tonini, M.H., Martos, P., & Combes, V. (2018). Modelado de la dinámica oceánica en el Golfo San Jorge. X Jornadas Nacionales de Ciencias del Mar. FCEyN –UBA –Buenos Aires. Libro de resúmenes. http:// p 49.

Pugh, D. & Woodworth, P. (2014). Sea Level Science- Understanding tides, surges, tsunamis and mean sea level.

Cambridge University Press.

Pujol, M.I., Dibarboure, G., Le Traon, P.Y., y Klein, P. (2012). Using High-Resolution Altimetry to Observe Mesoscale Signals.

Journal of Atmospheric and Oceanic Technology, 29(9), 1409–1416, Ray, R.D. (1999). A Global Ocean Tide Model from TOPEX/POSEIDON Altimetry: GOT99.2. Report available from the

NASA Center for AeroSpace Information, 7121 Standard Drive, Hanover, MD 21076-1320. (301) 621-0390. Simionato, C.G., Dragani, W., Núñez, M., y Engel, N. (2004). A Set of 3-D Nested Models for Tidal Propagation from the

Argentinean Continental Shelf to the Río de la Plata Estuary—Part I. M2. Journal of Coastal Research, 893-912. Stammer, D., Ray, R. D., Andersen, O. B., Arbic, B. K., Bosch, W., Carrère, L., Cheng, Y., Chinn, D. S., Dushaw, B. D., Egbert,

G. D., Erofeeva, S. Y., Fok, H. S., Green, J. A. M., Griffiths, S., King, M. A., Lapin, V., Lemoine, F. G., Luthcke, S. B.,

Lyard, F., Morison, J., Müller, M., Padman, L., Richman, J. G., Shriver, J. F., Shum, C. K., Taguchi, E., & Yi, Y. (2014). Accuracy assessment of global barotropic ocean tide models. Review of Geophysics, 52, 243–282, https://

Wunsch, C. & Ferrari, R. (2004). Vertical Mixing, Energy, and the General Circulation of the Oceans. Annual Review of Fluid Mechanics, 36(1), 281-314,

Yongcun Ch. & Ole B. A. (2010). Improvement in global ocean tide model in shallow water regions. Altimetry for Oceans and Hydrology OST-ST Meeting. Poster, SV.1-68 45. OSTST/2010/ChengYongcun.pdf

Zaron, E.D. & Elipot S. (2021). An Assessment of Global Ocean Barotropic Tide Models Using Geodetic Mission Altimetry and Surface Drifters. Journal of Physical Oceanography, 51, 63-82, 0089.s1

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

Copyright (c) 2022 Maria Florencia de Azkue, Enrique Eduardo D'Onofrio, Alan Jacobs


Download data is not yet available.


Metrics Loading ...