Abstract
The installation of underground pipelines is a necessary infrastructure for connecting the energy grid in most countries. However, the long-term changes in vegetation composition and temporal structure, as well as the effects on biodiversity in arid ecosystems in the Magellanic steppe, are not well understood in detail. To mitigate this, it is proposed to evaluate the recovery of vegetation cover in native grasslands (coironales) that are part of these arid and semi-arid ecosystems. The objective of the study is to identify the effects of the installation of a hydrocarbon pipeline on the composition and structure of vegetation, and to evaluate the similarity or differences of the vegetation established in a pipeline versus the reference vegetation. The Block Coiron area in the San Gregorio summits, Magallanes region, Chile, was studied. Twenty-eight taxa were identified in the pipeline and 39 in the reference vegetation. Biodiversity was higher in the reference vegetation compared to the pipeline, where a decrease was observed in terms of the number of species and coverage. Principal Component Analysis (PCA) and SIMPER analysis identified the species that most significantly contributed to similarity within each group. The results showed that at least 7 years are needed to recover areas affected by the installation of a hydrocarbon pipeline and that grazing pressure and climatic events such as water deficit may be interfering with vegetation recovery.
References
Begon, M., Harper, J.L., Townsend, C.R. (1996). Ecology, third ed. Blackwell Science Publisher, London.
Braun-Blanquet, J. (1979). Fitosociología. Bases para el estudio de las comunidades vegetales. Madrid: Blume Ediciones.
Brehm, T., & Culman, S. (2022). Pipeline installation effects on soils and plants: A review and quantitative synthesis. Agrosystems, Geosciences & Environment, 5, e20312.
https://doi.org/10.1002/agg2.20312
Clarke, K.R. (1993). Non-parametric multivariate analyses of change in community structure. Australian Journal of Ecology, 18: 117-143.
Clarke, K.R. & Green, R.H. (1988). Statistical design and analysis for a ‘biological effects’ study. Marine Ecology Progress Series, 46: 213-226.
Colwell, R.K. & Coddington, J.A. (1994). Estimating terrestrial biodiversity through extrapolation. Philosophical Transactions of the Royal Society B: Biological Sciences, 345:101–118. http://doi.org/10.1098/rstb.1994.0091
Cortina, J., Amat, B., Castillo, V.M., Fuentes, D., Maestre, F.T., Padilla, F.M. & Rojo, L. 2011. The restoration of vegetation cover in the semi-arid Iberian southeast. Journal of Arid Environments, 75: 1377-1384.
Correa, M. N. (1969, 1971, 1978, 1984, 1985, 1988, 1999). Flora Patagónica I-VIII. Colección Científica INTA. Buenos Aires.
Desserud, P., Gates, C. C., Adams, B., & Revel, R. D. (2010). Restoration of foothills rough fescue grassland following pipeline disturbance in southwestern Alberta. Journal of Environmental Management, 91(12), 2763–2770. https://doi.org/10.1016/j.jenvman.2010.08.006
Di Rienzo, J., Casanoves, F., Balzarini, M., Gonzalez, L., Tablada, M., & Robledo, C. (2011). InfoStat versión 2016. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. URL http: // www. infostat. com. Arkansas
Domínguez, E. & Santis, P. (2021). Plantas naturalizadas e introducidas de la región de Magallanes, asociadas a la actividad silvoagropecuaria y áreas protegidas: atributos de vida, distribución y estatus de invasión. Chloris Chilensis. Año 24(2): 21-47. URL: http://www.chlorischile.cl.
Domínguez, E., Suárez, A., Navarro, E., Romo, J., Alarcón, M. & Seguich, M. (2022) Monitoreo de la cubierta vegetal para evaluar la sucesión secundaria de los pastizales nativos en la línea de flujo ducto Dorado Sur ZG-1 (ex A) [en línea]. Punta Arenas, Chile: Instituto de Investigaciones Agropecuarias. Informativo INIA Kampenaike N° 123. Disponible en: https://hdl.handle.net/20.500.14001/68709 (Consultado: 5 febrero 2023).
González, A. (2000). Evaluación del recurso vegetacional en la cuenca del río Budi, situación actual y propuestas de manejo. Tesis Licenciatura en Recursos Naturales, Facultad de Ciencias, Universidad Católica de Temuco, Chile. 110 pp.
Haddad, N.M.; Bowne, D.R.; Cunningham, A.; Danielson, B.J.; Levey, D.J.;Sargent, S.; Spira, T. (2003).Corridor use by diverse taxa. Ecology, 84: 609–615.
Hammer, Ø., Harper, D., & Ryan, P. (2001). PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4(1):1-9.
INIA, 1982. Plan de Estudio Desarrollo Tecnológico Agropecuario XII Región. Vol VI Unidad de Trabajo N° 3. Distritos Agroclimáticos. Secretaría de Planificación y Coordinación Regional de Magallanes y Antártica Chilena.
Kowaljow, E., & Rostagno, C.M. (2013). Enramado y riego como alternativas de rehabilitación de regiones semiáridas afectadas por el tendido de ductos. Ecología Austral, 23(1): 62–69. https://doi.org/10.25260/EA.13.23.1.0.1193
Luebert, F., & Pliscoff, P. (2017). https://www.ide.cl/index.php/flora-y-fauna/item/1524-pisos- vegetacionales-luebert-pliscoff-2017
Maestre, F.T., Bowker, M.A., Cantón, Y., Castillo-Monroy, A.P., Cortina, J., Escolar, C., Escudero, A., Lázaro, R., Martínez, I. (2011). Ecology and functional roles of biological soil crusts in semi-arid ecosystems of Spain. Journal of Arid Environments, 75:1282-1291.
McClung, M. R., & Moran, M. D. (2018). Understanding and mitigating impacts of unconventional oil and gas development on land-use and ecosystem services in the US. Current Opinion in Environmental Science & Health, 3, 19–26.
Naeth, M.A., S.R. Wilkinson, D.A. Locky, C.L. Bryks, C.H. Low & M.R. Nannt. (2020). Pipeline Impacts and Recovery of Dry Mixed-Grass Prairie Soil and Plant Communities, Rangeland Ecology & Management, 73(5): 619-628.
Neilsen, D., MacKenzie, A. F., & Stewart, A. (1990). The effects of buried pipeline installation and fertilizer treatments on corn productivity on three eastern Canadian soils. Canadian Journal of Soil Science, 70(2): 169–179. https://doi.org/10.4141/cjss90-019
Neville, M., Lancaster, J., Adams, B. & Desserud, P. (2014). Recovery strategies for industrial development in native prairie for the Mixedgrass Natural Subregion of Alberta. First approximation. Prepared for Range Resource Management Branch, Public Lands Division, Alberta Environment and Sustainable Resource Development. Lethbridge, Canada
Oliva, G., Ferrante, D., Paredes, P., Humano, G., Cesa, G. (2016). A conceptual model for changes in floristic diversity under grazing in semi-arid Patagonia using the State and Transition framework. Journal of Arid Environments, 127:120-127.
Olson, E.R. & Doherty, J.M. (2012). The legacy of pipeline installation on the soil and vegetation of southeast Wisconsin wetlands, Ecological Engineering, 39:53-62.
Pinno, B.D. & Errington, R.C. (2015) Maximizing natural trembling aspen seedling establishment on a reclaimed boreal Oil Sands site. Ecological Restoration, 33:43–50. https://doi.org/10.3368/er.33.1.43
Prach, K., Šebelíkova, L., ?ehounkova, K., del Moral, R. (2020) Possibilities and limitations of passive restoration of heavily disturbed sites. Landscape Research, 45:247–253. https://doi.org/10.1080/01426397.2019.1593335
Rodríguez, R., & Marticorena, A. (Eds.). (2019). Catálogo de las plantas vasculares de Chile. Universidad de Concepción.
Santibáñez, F; Santibáñez P; Caroca, C. y González, P. (2017). Atlas agroclimático de Chile. Estado actual y tendencias del clima. Tomo VI: Regiones de Aysén y Magallanes. http://www.agrimed.cl/atlas/tomo6.html
Sonkoly, J., Deak, B., Valko, O., Molnar, A., Tothmérész, B., & Török, P. (2017). Do large-seeded herbs have a small range size? The seed mass-distribution range trade-off hypothesis. Ecology and Evolution, 19: 11204–11212. https://doi.org/10.1002/ece3.3568
Shi, P., Huang, Y., Chen, H., Wang, Y., Xiao, J., & Chen, L. (2015). Quantifying the effects of pipeline installation on agricultural productivity in west China. Agronomy Journal, 107(2): 524–531. https://doi.org/10.2134/agronj14.0023
Svoboda, J. & Henry, G. (1987). Succession in marginal artic environments. Artic and Alpine Research, 19: 373-384.
Turuga, L., Albulescu, M., Popovici, H., Puscas, A. (2008). Taraxacum officinale in phytoremediation of contaminated soils by industrial activities. Annals of West University of Timisoara, Series Chemistry, 17 (2): 39–44.
Tekeste, M. Z., Ebrahimi, E., Hanna, M. H., Neideigh, E. R., & Horton, R. (2020). Effect of subsoil tillage during pipeline construction activities on near-term soil physical properties and crop yields in the right-of-way. Soil Use and Management, 1–11. https://doi.org/10.1111/sum.12623
van der Maarel, E. (2007). Transformation of cover-abundance values for appropriate numerical treatment Alternatives to the proposals by Podani. Journal of Vegetation Science, 18(5): 767-770.
Wang, N., He, X. Y., Zhao, F. W., Wang, D. L., & Jiao, J. Y. (2020). Soil seed bank in different vegetation types in the Loess Plateau region and its role in vegetation restoration. Restoration Ecology, 28, A5–A12. https://doi.org/10.1111/rec.13169
Xiao, J., Wang, Y., Shi, P., Yang, L. & Chen, L.D. (2014). Potential effects of large linear pipeline construction on soil and vegetation in ecologically fragile regions. Environmental Monitoring and Assessment, 186(11): 8037–8048. https://doi.org/10.1007/s10661-014-3986-0
Zhao, F., Wang, N., Liu, J., & Zhou, Z. (2022). Effects of vegetation type and topography on vegetation restoration after pipeline construction in the Northern Shaanxi Loess Plateau, China. Ecological Research, 1–11. https:// doi.org/10.1111/1440-1703.12360
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Copyright (c) 2023 Erwin Domínguez