Catalogue of lichens (and some related fungi) of Navarino Island, Cape Horn Biosphere Reserve, Chile

JAVIER ETAYO1, LEOPOLDO G. SANCHO2, ANTONIO GÓMEZ-BOLEA3, ULRIK SØCHTING4, FRANCISCO AGUIRRE5 & RICARDO ROZZI6

1. https://orcid.org/0000-0003-0392-0710; 2. https://orcid.org/0000-0002-4751-7475; 3. https://orcid.org/0000-0001-5836-6767; 4. https://orcid.org/0000-0001-7122-9425; 5. https://orcid.org/0000-0001-7546-0106; 6. https://orcid.org/0000-0001-5265-8726

ABSTRACT

The Cape Horn Biosphere Reserve, Chile, has been identified as a hotspot of bryophyte diversity and it has been suggested to be the same for lichens. However, in contrast to the extensive bryophyte studies, only preliminary lichen inventories had been conducted in this reserve. We conducted the first intensive study on the diversity of lichens on Navarino Island during the southern summers of 2005 and 2008. We explored the main habitat types of the island, including coastal areas, evergreen and deciduous forests, Magellanic tundra, and high Andean (“alpine”) habitats on the mountain summits. The following substrates on which lichens grow were considered: bark, wood (incl. logs, stumps), soil, mosses, and rocks. We recorded a total of 416 taxa, although some of them not identified to species level. A main result is the finding of two species that are proposed as new: The lichen Candelariella magellanica, and the saprobic fungus Sclerococcum nothofagi that grows on the bark of trees of the genus Nothofagus. In addition, one species of lichenicolous fungus is recorded for the first time on Navarino Island: Tremella haematommatis. These results provide additional evidence about the great diversity of lichens that are conserved in the Cape Horn Biosphere Reserve.

Key words: biodiversity, flora, lichenicolous fungi, sub-Antarctic, Tierra del Fuego
Resumen

La Reserva de la Biosfera Cabo de Hornos, Chile, ha sido identificada como un área de alta diversidad de briófitas y se ha sugerido que también lo sea para los líquenes. Sin embargo, en contraste con los extensos estudios de briófitas, sólo se habían realizado inventarios preliminares de líquenes en esta reserva. Realizamos el primer estudio florístico intensivo sobre la diversidad de líquenes en la isla Navarino durante los veranos australes de 2005 y 2008. Exploramos los principales tipos de hábitat de la isla, incluyendo áreas costeras, bosques siempreverdes y caducifolios, complejo de tundra de Magallanes y hábitats altoandinos (“alpinos”) en las cumbres de las montañas. Se consideraron los diferentes sustratos sobre los que crecen los líquenes: corteza, madera (incluidos troncos, tocones), tierra, musgos y rocas. Registramos un total de 416 taxones, aunque algunos de ellos no se identificaron a nivel de especie. Un resultado principal es el hallazgo de dos especies que se proponen como nuevas: el liquen *Candelariella magellanica* y el hongo sapróbio *Sclerococcum nothofagi* que crece sobre la corteza de árboles del género *Nothofagus*. Además, una especie de hongo liquénico, *Tremella haematommatis*, se registró por primera vez en la isla Navarino. Estos resultados proporcionan evidencia adicional sobre la gran diversidad de líquenes que se conservan en la Reserva de la Biosfera Cabo de Hornos.

Palabras clave: biodiversidad, flora, hongos liquénicos, subantárctico, Tierra del Fuego.
INTRODUCTION

The southern tip of South America offers some unique features of great interest for biodiversity and ecology. First, we find here the southernmost forests of the world, almost ten degrees further south than the New Zealand forests (Rozzi et al. 2012a). Second, being the southern end of the Andes, the region is mostly covered by complex mountain ranges with hundreds of glaciers and an extensive tundra, which is the most obvious biogeographical link with the vegetation of Antarctica, only 900 km away (Pisano, 1977; Rozzi, 2018). Third, the Subantarctic Magellanic forests are protected by the Cape Horn Biosphere Reserve, and most of them are essentially undisturbed (Rozzi et al. 2006a). These forests are dominated by three broad-leaf species of the genus *Nothofagus*: the deciduous *Nothofagus pumilio* (Mirb.) Oerst. and *N. antarctica* (G. Forst.) Oerst., and the evergreen *N. betuloides* (Poepp. & Endl.) Krasser. The distribution of these species and of the types of *Nothofagus* forests is associated with ecological factors like climate, soil, and topography (Aguirre et al. 2021, Cuevas, 2000; Donoso, 1995; Frangi & Richter, 1994; Frangi et al. 2005; Gerding & Thiers, 2002; Gutiérrez et al. 1991; Pisano, 1980 and Veblen et al. 1996;).

On Navarino Island, accurate surveys have been carried out along altitudinal gradients through the forests revealing three vegetation types: a) mixed forest of *N. betuloides* and *N. pumilio* distributed at lower altitudes (0–300 m); b) pure forests of *N. pumilio* distributed at higher altitudes (350–550 m); c) krummholz forest of *N. pumilio* near the tree line (500–550 m) (Molina et al. 2016). On the island, the tree line at approximately 500 m is sharp and clear being one of the most typical features of a landscape (Fig. 1) where *Nothofagus* forests started to colonize since at least 10,000 years BP (Heusser, 1989).

Located on the south bank of the Beagle Channel, Navarino Island summarizes well the ecological richness of the Subantarctic Magellanic ecoregion (Rozzi 2018). It is one of the biggest islands south of Tierra del Fuego in the Cape Horn Biosphere Reserve. Virtually free of ice the Dientes de Navarino mountain range, with several summits above 1000 m, allows the development of alpine environments with many permanent snow peaks, an extensive tundra and all kind of rocky habitats intensively colonized by rich lichen communities (Sancho, 2012). Saxicolous lichens are also abundant on pebbles and cliffs of the coast, with varying colours as a response to the tides and sea spray gradients. In between, a thick forest belt extends till the limit of the alpine tundra. Navarino forests contain an impressive community of epiphytic lichens rich in diversity and with a high biomass. However, forest extension is also limited by the presence of peat bogs and wetlands that dominate big areas of the island (Molina et al. 2016; Pisano, 1977).

The Subantarctic Magellanic ecoregion has an oceanic climate (Contador et al. 2015, Rozzi et al. 2012a) but with one of the world’s most extreme west-east precipitation gradients due to the intersection of the westerly belt by the Darwin cordillera (Aguirre et al. 2021). Although Navarino Island is located at subpolar latitudes (54°52'S–55°18'S; 67°03'W and 68°22'W), the climate is mild due to strong oceanic conditions characterized by low thermal variations between seasons, and even precipitation throughout the year (Rozzi et al. 2014, 2020b). The annual rainfall ranges from over 1000 mm in the western and southern areas to 500 mm in the central and northern areas of the island (Aguirre et al. 2021; Tuhkanen et al., 1990). The oceanic conditions combined with gradients of rainfall and a multiplicity of habitats contributes to the high diversity
Fig. 1. Above: On Navarino Island and Hoste Island south of the Beagle Channel, the tree line is sharp at approximately 500 m. At this altitude, the high deciduous tree *Nothofagus pumilio* form krummholz forests. Above the tree line, the high Andean or “Alpine” vegetation includes a high diversity of lichens. Photo by Ricardo Rozzi taken from the Beagle Channel southward in February 2019.

Below: Close-up of the tree line on Navarino Island showing krummholz forests of *N. pumilio* at the tree line. Photograph by Adam Wilson taken on Cerro Bandera showing the Dientes de Navarino in the background in January 2010.
of cryptogams on Navarino Island; indeed, the Cape Horn Biosphere Reserve has been identified as a world hotspot of bryophyte diversity (Buck & Goffinet, 2010; Rozzi 2008). An indication of the lichen richness of Navarino Island is the exceptionally high number of lichenicolous fungi found in this area (Etayo & Sancho, 2008).

Significant efforts have been made to highlight the cryptogamic diversity found in the Cape Horn Biosphere Reserve (Méndez et al. 2013; Rozzi et al. 2012b). In this context, the Omora Ethnobotanical Park research team has created an especially remarkable activity called “Ecotourism with a Hand-Lens” (Rozzi et al. 2020a; Sancho, 2012). Omora Park is located 3 km west of Puerto Williams, on the north-central shore of Navarino Island. Dr. Ricardo Rozzi and Dra. Francisca Massardo, both associated with the Universidad de Magallanes in Puerto Williams, as well as residents on Navarino Island, were instrumental in encouraging biodiversity research and integrating cryptogam diversity in the development of ecotourism (Goffinet et al. 2012; Rozzi et al. 2012b). Navarino Island and other islands south of Tierra del Fuego host a high cryptogamic diversity (Rozzi et al. 2007). Omora Park researchers used this fact as a decisive argument to support their proposal to create the Cape Horn Biosphere Reserve by UNESCO (Rozzi et al. 2007, 2020a).

HABITAT TYPES

Navarino Island has an area of 2,514 square kilometers. It hosts a mosaic of habitat types that includes moorlands, forests, high-Andean or alpine vegetation (Fig. 2). Lichens grow in all these habitat types, which we concisely describe below.
1. Moorlands. The magellanic tundra complex. Vast areas of the Cape Horn Biosphere Reserve, including Navarino Island, are dominated by mires (Rozzi et al. 2007) (Fig. 3). This is the most extensive habitat type in the biosphere reserve, and it represents 54% of the land cover on Navarino Island (Fig. 2). Edmund Pisano (1977) calls the set of different types of mires “Magellanic tundra complex”, also known as “Magellanic Moorland” (Godley, 1960). Pisano distinguishes the following five main types.

1.1. Peatlands or Sphagnum tundra that includes two dominant species of mosses, *Sphagnum magellanicum* Brid. and *S. fimbriatum* Wilson (Fig. 4). This habitat represents the largest reserve of CO$_2$ in the biomass of dead organic matter that accumulates under the cushions of *Sphagnum* (León et al. 2021). This habitat also includes dwarf trees and shrubs, such as the smallest Myrtaceae (*Myrteola nummularia* (Lam.) O. Berg) as well as low trees of *Nothofagus antarctica* and *N. betuloides* that grow in this moss dominated matrix (Mackenzie et al. 2016). Lichens grow directly on the *Sphagnum* matrix as well as on the bark of small shrubs and trees.

1.2. Cushion plant bogs, dominated by a matrix of cushion plants of the genera *Astilea, Azorella, Laretia* and *Bolax* (Figs. 5 and 6). Small Juncaceae such as *Rostkovia magellanica* Desv. and *Juncus stipulates* Nees & Meyen, which typically grow around ponds embedded in the layer of cushion plants (Rozzi, 2018).

1.3. Graminoid bogs, zones dominated by grass-like plants, “graminoid”, such as *Schoenus antarcticus* (Hook. f.) Dusén, *Tetroncium magellanicum* Willd. and *Uncinia kingii* R. Br. ex Boott. (Pisano, 1980). Commonly associated with cushion bog areas, and more recently with abandoned beaver ponds (Anderson et al. 2006) (Fig. 7).
Fig. 4. Peatlands of *Sphagnum magellanicum* (brown-red) and *S. fimbriatum* (green). Peatlands are a main component of the Magellanic tundra complex. Photograph by Javier Etayo taken at the trail from Wulaia to Caleta Mejillones on Navarino Island on 23 January 2005.

Fig. 5. High Andean cushion plant bogs dominated by plants ball-forming and very compact dominated by *Bolax gummifera*. Photograph by Javier Etayo taken at Cerro Bandera on 9 January 2005.
Fig. 6. A community of terricolous and humicolous lichens growing on and between the cushion plants. Photograph by Javier Etayo taken at Cerro Bandera on 9 January 2005.

Fig. 7. Graminoid bogs growing on an abandoned beaver pond that inundated a forest of Nothofagus antarctica. Photograph by Javier Etayo taken at Ukika River trail to Puerto Williams on 27 January 2005.
1.4. **Rush wetlands**. hyperhumid habitats dominated by the rush *Marsippospermum grandiflorum* (L.f.) Hook., which provides a critical nesting habitat for numerous bird species such as the South American Snipe or Magellan Snipe (*Gallinago paraguaiae* Vieillot, 1816) (Fig. 8). This habitat is culturally relevant, since it is the place where the Yaghan community gathers fibers for their traditional basket weaving (Rozzi *et al.* 2010).

1.5. **Tussock** habitats, a type of tundra dominated by tall grasses of *Poa flabellata* (Lam.) Hook. f., a species native to southern South America, including beyond the Cape Horn Biosphere Reserve, the Falkland Islands, South Georgia and other islands in the South Atlantic (Mackenzie *et al.* 2020). *P. flabellata* grows in dense clumps, usually about 2 meters high (although they can be much taller), mainly on wet exposed coastal areas (Rozzi *et al.* 2020b). Tussock habitats are found only in small areas of Navarino Island, and in our study lichen collecting did not take place in this type of habitat in this study.

2. **Evergreen Subantarctic Magellanic rainforests**. This is the second most extensive habitat type in Cape Horn Biosphere Reserve, and it represents 20% of the land cover on Navarino Island (Rozzi *et al.* 2007) (Fig. 9). It prevails in perhumid zones, and is dominated by the Evergreen Beech (*Nothofagus betuloides*). This evergreen broadleaf forest contrasts with boreal forests in subpolar latitudes in the Northern Hemisphere that are dominated by coniferous species (Veblen *et al.* 1996). This forest type reaches the southernmost island in the Cape Horn archipelago that has a warmer climate than other subantarctic islands at similar latitudes due to its position alongside the west side of South America, where the Convergence Zone is deflected southward (Buma *et al.* 2021). Other evergreen broadleaf tree species in these forests of Cape Horn include Winter’s Bark (*Drimys winteri* Jordan Forst. & G. Forst), and the Pickwood (*Maytenus magellanica* (Lam.) Hook. f.) (Pisano, 1977). A well-developed understory formed by shrubs of Holly-leafed
Barberry (*Berberis ilicifolia* G. Forst.), Box-leafed Barberry (*B. microphylla* G. Forst.), and Wild Currant (*Ribes magellanicum* Poir.) characterizes these evergreen forests. The physiognomy of forests dominated by *N. betuloides* is complex and multi-layered; trunks and large branches are profusely covered by lichens as well as by mosses and liverworts (Pisano, 1980). In these evergreen forest lichens grow on the soil as well as on the bark of trunks and branches of trees and shrubs (Goffinet *et al.* 2012).

3. **Deciduous forest.** This is the third most extensive habitat type in Cape Horn Biosphere Reserve, and it represents 14% of the land cover on Navarino Island (Rozzi *et al.* 2007) (Fig. 10). It prevails in drier areas that receive less than 1000 mm annual rainfall and on soils that have good drainage. Hence, on Navarino Island deciduous forests dominated by deciduous beech (*Nothofagus pumilio*) forests prevail on the majority of the mountainous slopes above 150 m altitude. At lower altitudes, *N. pumilio* and *N. betuloides* often form mixed forests of evergreen and deciduous trees (Rozzi *et al.* 2006b). The understory of deciduous forests is poorly developed and consists mainly of a layer of low shrubs, such as *Maytenus disticha* (Hook. f.) Urb. and *Gaultheria mucronata* (L.f.) Hook. & Arn., and herbaceous plants, such as *Rubus geoides* Sm. (Molina *et al.* 2016; Pisano, 1977). In these deciduous forests, lichens grow on the soil as well as on the bark of trunks and branches of trees and shrubs (Goffinet *et al.* 2012).

4. **High Andean cushion plants.** Above the tree line, a diverse flora of mosses and lichen species grow on the rocks or associated with cushion plants (Méndez *et al.* 2013) (Fig. 11). This is the fourth most extensive habitat type in Cape Horn Biosphere Reserve, and it represents 6% of the land cover on Navarino Island (Rozzi *et al.* 2007). These high Andean or alpine habitats have
Fig. 10. Deciduous forests of High-Deciduous Beech (*Nothofagus pumilio*) represents the 14% of the land cover on Navarino Island. Primary forests with many fallen and rotten logs are common. They can be found mixed with evergreen trees of *N. betuloides*. Photograph by Silvina Ippi taken at Omora Park on January 2003.

Fig. 11. Above the tree line on Navarino Island, lichens are the most diverse and abundant group of photosynthetic organisms. Photograph by Javier Etayo taken at Dientes de Navarino on 19 January 2005.
Fig. 12. High Andean habitats on Navarino Island where many species of lichens and mosses grow on rock. Photograph by Javier Etayo taken at Róbalo Mountain, Dientes de Navarino, on 18 January 2005.

Fig. 13. Rocks at the summit of Bandera Mountain, almost completely covered by lichens, mostly belonging to the genera Lecidea, Ochrolechia, Placopsis, Usnea. Photograph by Leopoldo G. Sancho taken at Dientes de Navarino, on 19 January 2005.
three distinct altitudinal levels: i) a lower zone dominated by low shrubs (e.g. *Empetrum rubrum* Vahl ex Willd.); ii) an intermediate zone dominated by cushion plants (e.g. *Bolax gummifera* (Lam.) Spreng., *Azorella selago*); iii) a high zone dominated by lichens on rocky substrates (Méndez et al. 2013; Rozzi et al. 2006a).

5. Rocky mountain summits. This habitat type represents 1% of the land cover on Navarino Island (Rozzi et al. 2007) (Figs. 12 and 13). Rocky outcrops and also rocks exposed by recent glacial retreats host a diversity of species of lichens and mosses (Goffinet et al. 2012).

6. Lakes. This habitat type represents 5% of the land cover on Navarino Island (Fig. 14). Since the last glacial maximum, 20,000 to 15,000 years BP (Heusser, 1989), glaciers retreat has generated numerous lakes and lagoons as well as streams that descend from the mountains (Aguirre et al. 2021). In the riparian habitats along these streams and lakes, there grows a diversity of lichens and bryophytes (Goffinet et al. 2012).

7. Coastal habitats. Beyond terrestrial habitats, the coasts of Navarino Island include rocky intertidal zones that host a unique set of lichen species (Sancho, 2012) (Fig. 15). In the lower extreme of the intertidal zones, crustose lichens of the genus *Verrucaria* s.lat. form a conspicuous black or purple zone on the rocks. Above the high tide line, another set of crustose lichen species of the family *Teloschistaceae* form a conspicuous orange-colored band that extends to 1 or 2 m above sea level. Further up, the rocks are covered by lichens of particularly the genera *Pertusaria*, *Haematomma*, and *Ramalina*.
HISTORY OF LICHEN STUDIES ON NAVARINO ISLAND

Despite the high diversity of lichens in the archipelagoes of the Cape Horn Biosphere Reserve in general, and on Navarino Island in particular, only occasional lichenological studies have been carried out in this area. Rolf Santesson visited the northern coastal areas of Hoste and Navarino islands in 1940. His samples were never published by him, and today are deposited in UPS and are visible in Fryday (2020). He included 31 species: Chaenotheca furfuracea (Navarino), Chrysothrix candelaris (Navarino), Cladonia lepidophora (Navarino), Hypogymnia austerodes (Navarino), Hypotrachyna swinscowii (Navarino), Leptogium menziesii (Navarino), Menegazzia magellanica (Hoste), M. sanguinesscens (Hoste), M. tenuis (Hoste), Nephroma cellulosum (Hoste, Navarino), Parmelia saxatilis (Navarino), Parmeliella sp. (Navarino), Peltigera canina (Navarino), P. didactyla (Navarino), P. polydactylon (Hoste), Platismatia glauca (Hoste, Navarino), Pseudocyphellaria corifolia (Hoste, Navarino), P. crocata (Hoste, Navarino), P. dubia (Hoste, Navarino), P. faveolata (Hoste), P. freycinetii (Hoste), P. glabra (Hoste, Navarino), P. granulata (Hoste, Navarino), P. hirsuta (Navarino), P. lechleri (Hoste, Navarino), P. mallota (Navarino), P. obvoluta (Hoste), P. scabrosa (Hoste), P. vaccina (Hoste, Navarino), Punctelia stictica (Navarino) and Xanthoria (Polycauliona) candelaria (Navarino). Lately, the herbarium of Naturhistoriska riksmuseet displayed all the samples collected by Santesson in that expedition and increased the number of lichens to 91 (https://herbarium.nrm.se/search/specimens/?query=Navarino&name=&family=&basionym=&continent=all&year=&collector=Santesson&collorknumber=&group=svampar&createddate=), although several of them are repeated or without specific number. The species not recorded in Fryday (2020) but here are recorded in the present text as Naturhistoriska riksmuseet (2021).
Walker (1985) cites specimens of *Usnea acromelana*, *U. antarctica*, *U. aurantiacoatra*, *U. patagonica*, and *U. trachycarpa* collected by Santesson at Navarino on 28 February 1940 and by other authors. There are two problems with this: Walker’s purely morphological species concepts are not always reliable and the records of *U. antarctica* are certainly wrong. Lagostina *et al.* (2021) have studied many samples from Patagonia (incl. Navarino) with microsatellites and none of them belonged to *U. antarctica*. They were all damaged *U. aurantiacoatra* and *U. trachycarpa*.

One of the most avid collectors of lichens in the surrounding regions was Henry Imshaug, but he never visited these austral islands. Rédon and Quilhot (1977) listed 56 species from the Navarino Island, and Galloway and Quilhot (1998) prepared a lichen flora for Chile with records from the island. Since 2005, a team led by Leo G. Sancho, Madrid, performed intensive field work on Navarino Island and other islands and areas around the Beagle Channel. Etayo and Sancho (2008) publishing on lichenicolous fungi of the island recorded 113 lichen species as hosts, which, at that moment, was the most accurate catalogue of lichens from Navarino Island. More recently, floristic and taxonomical papers focusing on particular lichen groups have been published (Burgaz & Raggio, 2007; Lagostina *et al.* 2021; Ruprecht *et al.* 2016; Søchting & Sancho, 2012; Søchting *et al.* 2014, 2016, 2021;), as well as ecophysiological studies focussing on *Usnea* species (Laguna-Defior *et al.* 2016). The relative lack of critical floristic surveys in Tierra del Fuego and the Cape Horn region prevents any comparison with the much better known Antarctic lichen diversity (Olech, 2004; Øvstedal & Lewis Smith, 2001; Søchting *et al.* 2004), therefore the degree of biogeographical affinity between the two sides of the Drake Passage as well as with other austral cold temperate regions like Tasmania and New Zealand is still largely unknown (Muñoz *et al.* 2004; Winkworth *et al.* 2002). In order to bridge this gap we present in this work the results of an extensive survey of lichen diversity on Navarino Island.

MATERIAL AND METHODS

In January – February 2005, and January 2008 extensive expeditions were made in the different habitat types of Navarino Island. The sampling effort included 46 sites on North and Northwest part of Navarino Island and adjacent islets (Fig. 16). Unfortunately, we did not have the chance to visit the South and Southeast part of the island due to logistical constraints. A detailed characterization of each site, including sampling date, exact location, altitude, habitat types, and collectors is provided in Table 1. Further collections were made by Ulrik Søchting in 2015 in Puerto Williams around the airport and at Caleta Honda.

In the description of each identified species of lichen, we indicate the accepted name and synonyms that have been used in the area, we record each sampling site (with the number of the site), the collector’s name, and the herbarium number. Some species that are easily identified in the field and therefore not collected appear in the text as f.o. (field observation). When the samples fit well with the concept of the species and this is commonly collected in South America or Europe, we do not offer any morphological or anatomical description. We only do it when Navarino samples differ in some way to descriptions and in this case these differences are discussed. Traditional morphological and anatomical methods have been used and will not be further described. Molecular methods have not been used in this study, but have been used in many of the cited papers. Vouchers are deposited in the herbaria indicated in the paper after the cited specimens, primarily in MAF-Lich, UMAG, C and personal herbaria of the authors. We
have aimed at citing in the catalogue all known occurrences in Navarino Island, except those repeated by several authors in papers about other regions like Rubio et al. (2013) or recorded in non-floristic papers. For the identification of some lichen species, specimens were sent to other specialists that appear under acknowledgements. This catalogue of the lichen flora of Navarino Island does not pretend to be complete; surely many rare taxa have not been collected. Furthermore, the critical revision of, e.g., the Teloschistaceae disclosed that the taxonomy of many genera in the area may be in need of a thorough taxonomic revision. This has, however, not been the aim of this first attempt to catalogue the very rich lichen mycobiota from Navarino Island.
<table>
<thead>
<tr>
<th>Site Number</th>
<th>Site Name</th>
<th>Latitude (S)</th>
<th>Longitude (W)</th>
<th>Altitude (m)</th>
<th>Habitat type</th>
<th>Site and habitat characterization</th>
<th>Date</th>
<th>Collected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Omora Park</td>
<td>54°56'35.0''</td>
<td>67°39'26.4''</td>
<td>28</td>
<td>Evergreen/mix forests</td>
<td>On the ground and also as epiphytes on the three species of Nothofagus</td>
<td>8-Jan-05</td>
<td>J. Etayo, L.G. Sancho & A. Gómez-Bolea</td>
</tr>
<tr>
<td>2</td>
<td>Bandera Mt</td>
<td>54°57'14.6''</td>
<td>67°37'42.2''</td>
<td>260</td>
<td>Deciduous forests</td>
<td>Cerro Bandera Trail from the base to the "Mirador", old N. pumilio forest with many</td>
<td>9-Jan-05</td>
<td>J. Etayo, L.G. Sancho & A. Gómez-Bolea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fallen trunks</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Bandera Mt</td>
<td>54°57'37.3''</td>
<td>67°37'56.6''</td>
<td>584</td>
<td>Deciduous forests</td>
<td>Upper part of Cerro Bandera trail on north-facing slope. N. pumilio forest, near the</td>
<td>9-Jan-05</td>
<td>J. Etayo, L.G. Sancho & A. Gómez-Bolea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Krummholz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Bandera Mt</td>
<td>54°58'17.3''</td>
<td>67°37'59.0''</td>
<td>736</td>
<td>H. Andean cushion pl.</td>
<td>On the way from Cerro Bandera to Laguna El Salto, siliceous rocks</td>
<td>9-Jan-05</td>
<td>J. Etayo, L.G. Sancho & A. Gómez-Bolea</td>
</tr>
<tr>
<td>5</td>
<td>Mejillones Bay</td>
<td>54°54'03.0''</td>
<td>67°59'58.0''</td>
<td>6</td>
<td>Evergreen/mix</td>
<td>Road from Puer to Williams to the west (ca. km 37). coastal rocks and woods of N. betuloides</td>
<td>9-Jan-05</td>
<td>J. Etayo, L.G. Sancho & A. Gómez-Bolea</td>
</tr>
<tr>
<td>6</td>
<td>Mejillones Bay</td>
<td>54°53'59.4''</td>
<td>68°00'10.1''</td>
<td>19</td>
<td>Evergreen/mix</td>
<td>Small peninsula with rocks and forest of N. pumilio and N. betuloides</td>
<td>10-Jan-05</td>
<td>J. Etayo & A. Gómez-Bolea</td>
</tr>
<tr>
<td>7</td>
<td>Guerrico</td>
<td>54°54'48.4''</td>
<td>67°50'51.7''</td>
<td>28</td>
<td>Evergreen/mix forests</td>
<td>Road from Pto. Williams to the west, secondary forest with large N. pumilio trees</td>
<td>10-Jan-05</td>
<td>J. Etayo & A. Gómez-Bolea</td>
</tr>
<tr>
<td>8</td>
<td>Eugenia Port</td>
<td>54°54'49.1''</td>
<td>67°50'51.8''</td>
<td>30</td>
<td>Evergreen/mix forests</td>
<td>Puerto Eugenia, road from Pto. Williams to the east, forest of N. pumilio and N. betuloides at</td>
<td>11-Jan-05</td>
<td>J. Etayo, L.G. Sancho & A. Gómez-Bolea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the entrance of the military ground</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Pantalón Couve</td>
<td>54°55'45.5''</td>
<td>67°24'53.6''</td>
<td>24</td>
<td>Evergreen/mix</td>
<td>Road from Pto. Williams to the east. N. pumilio forests in caleta Pantalón</td>
<td>11-Jan-05</td>
<td>J. Etayo, L.G. Sancho & A. Gómez-Bolea</td>
</tr>
<tr>
<td>10</td>
<td>Róbalo Lake</td>
<td>54°58'04.0''</td>
<td>67°40'09.0''</td>
<td>223</td>
<td>Evergreen/mix</td>
<td>Trail to Róbalo Lake, humid forest of N. betuloides on west-facing slope</td>
<td>12-Jan-05</td>
<td>J. Etayo, L.G. Sancho, A. Gómez-Bolea & U. Søchting</td>
</tr>
<tr>
<td>11</td>
<td>Navarino Port</td>
<td>54°58'36.5''</td>
<td>67°40'52.6''</td>
<td>296</td>
<td>Evergreen/mix forests</td>
<td>Lake Róbalo camp site, old-growth forest of N. pumilio around the lake</td>
<td>12-Jan-05</td>
<td>J. Etayo, L.G. Sancho, A. Gómez-Bolea & U. Søchting</td>
</tr>
</tbody>
</table>

Table 1: List and description of each of the sites where lichens were collected on Navarino Island. Each number identifies a site and corresponds to the numbers on the map of Navarino Island on Fig. 16.
<table>
<thead>
<tr>
<th>No.</th>
<th>Location</th>
<th>Coordinates</th>
<th>Location Details</th>
<th>Date</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Honda Cueva</td>
<td>54°58'26.5" W, 67°40'58.6" S</td>
<td>Puerto Navarino (west end of the road Y-905), near Navy houses, coastal rocks and N. betuloides trees exposed to the wind</td>
<td>13-Jan-05</td>
<td>J. Etayo, A. Gómez-Bolea, U. Søchting & R. Vilches</td>
</tr>
<tr>
<td>13</td>
<td>Lum</td>
<td>54°58'23.0" W, 67°40'59.8" S</td>
<td>Road from Puerto Williams to the west, between Caleta Honda and Mejillones, closest to Lum, siliceous wall above intertidal coastal zone</td>
<td>13-Jan-05</td>
<td>J. Etayo, A. Gómez-Bolea, U. Søchting & R. Vilches</td>
</tr>
<tr>
<td>14</td>
<td>Lum</td>
<td>54°54'25.5" W, 68°06'47.8" S</td>
<td>Evergreen/mix forests</td>
<td>13-Jan-05</td>
<td>J. Etayo, A. Gómez-Bolea, U. Søchting & R. Vilches</td>
</tr>
<tr>
<td>15</td>
<td>Puerto Williams</td>
<td>54°56'46.0" W, 67°34'52.2" S</td>
<td>Trail that crosses Virgen de Lourdes towards Barranca Guarriaco through military zone, soil, slopes and forest with large trees of N. pumilio near the road</td>
<td>14-Jan-05</td>
<td>J. Etayo, L.G. Sancho, A. Gómez-Bolea & U. Søchting</td>
</tr>
<tr>
<td>16</td>
<td>Bandera Mt</td>
<td>54°57'38.5" W, 67°37'49.4" S</td>
<td>East facing slope, ledges with Bolax cushion plants</td>
<td>15-Jan-05</td>
<td>J. Etayo, A. Gómez-Bolea & U. Søchting</td>
</tr>
<tr>
<td>17</td>
<td>Bandera Mt</td>
<td>54°57'34.0" W, 67°37'46.4" S</td>
<td>“Krummholz” forests of N. pumilio, Cerro La Bandera</td>
<td>15-Jan-05</td>
<td>J. Etayo, A. Gómez-Bolea & U. Søchting</td>
</tr>
<tr>
<td>18</td>
<td>Ukika Mt</td>
<td>54°57'25.3" W, 67°35'38.4" S</td>
<td>Deciduous forests</td>
<td>16-Jan-05</td>
<td>J. Etayo, L.G. Sancho, A. Gómez-Bolea, U. Søchting & R. Vilches</td>
</tr>
<tr>
<td>19</td>
<td>Ukika Mt</td>
<td>54°57'00.9" W, 67°35'46.0" S</td>
<td>East-facing slope of Cerro Ukika in the Guanaco River Valley, old-growth forests of N. pumilio in deep valley</td>
<td>16-Jan-05</td>
<td>J. Etayo, L.G. Sancho, A. Gómez-Bolea, U. Søchting & R. Vilches</td>
</tr>
<tr>
<td>20</td>
<td>Róbalo Mt</td>
<td>54°58'15.3" W, 67°41'30.9" S</td>
<td>Deciduous forests, Cerro Róbalo, transect through forest reaching the tree line and beyond</td>
<td>18-Jan-05</td>
<td>J. Etayo, A. Gómez-Bolea, U. Søchting & R. Vilches</td>
</tr>
<tr>
<td>21</td>
<td>Dientes Navarino</td>
<td>54°59'09.6" W, 67°42'38.6" S</td>
<td>High part of the Róbalo Valley on the way to Dientes de Navarino, rocks, krummholz forests to the alpine belt</td>
<td>18-Jan-05</td>
<td>J. Etayo, A. Gómez-Bolea, U. Søchting & R. Vilches</td>
</tr>
<tr>
<td>22</td>
<td>Dientes Navarino</td>
<td>54°59'44.6" W, 67°41'50.5" S</td>
<td>Evergreen/mix forests, high part of the Róbalo Valley on the way to Dientes de Navarino, gentle slope</td>
<td>19-Jan-05</td>
<td>J. Etayo, A. Gómez-Bolea, U. Søchting & R. Vilches</td>
</tr>
<tr>
<td>23</td>
<td>Dientes Navarino</td>
<td>54°59'54.5" W, 67°40'53.0" S</td>
<td>H. Andean cushion plants, high part of the Róbalo Valley on the way to Dientes de Navarino, cliff and stones along the stream</td>
<td>19-Jan-05</td>
<td>J. Etayo, A. Gómez-Bolea, U. Søchting & R. Vilches</td>
</tr>
<tr>
<td>#</td>
<td>Location</td>
<td>Coordinates</td>
<td>Vegetation Type</td>
<td>Description</td>
<td></td>
</tr>
<tr>
<td>----</td>
<td>------------------</td>
<td>--------------------------</td>
<td>--------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Dientes Navarino</td>
<td>54°59'45.7" S 67°42'06.0" W</td>
<td>240</td>
<td>Deciduous forests with scattered stones on the way to Dientes de Navarino.</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Dientes Navarino</td>
<td>55°00'20.0" S 67°40'32.6" W</td>
<td>879</td>
<td>Deciduous forests with scattered stones on the way to Dientes de Navarino.</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Dientes Navarino</td>
<td>54°50'28.3" S 67°41'12.3" W</td>
<td>411</td>
<td>Evergreen/mix forests on the crest.</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>Dientes Navarino</td>
<td>54°58'20.3" S 67°40'03.9" W</td>
<td>266</td>
<td>Evergreen/mix forests.</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>Wulaia Bay</td>
<td>55°02'51.0" S 68°08'45.5" W</td>
<td>8</td>
<td>Evergreen/mix forests.</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>Wulaia Bay</td>
<td>55°00'01.5" S 68°10'28.8" W</td>
<td>12</td>
<td>Evergreen/mix forests.</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>Malaleno</td>
<td>55°02'20.3" S 68°07'48.0" W</td>
<td>429</td>
<td>Deciduous forests.</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>Malaleno</td>
<td>55°00'14.8" S 68°05'33.8" W</td>
<td>640</td>
<td>Peatlands/shrubs.</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>Malaleno</td>
<td>55°00'36.7" S 68°05'46.6" W</td>
<td>578</td>
<td>Peatlands/shrubs.</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>Malaleno</td>
<td>54°57'44.4" S 68°05'40.3" W</td>
<td>368</td>
<td>Deciduous forests.</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>Lum</td>
<td>54°57'05.3" S 68°05'52.5" W</td>
<td>326</td>
<td>Evergreen/mix forests.</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>Lum</td>
<td>54°56'44.1" S 68°06'45.3" W</td>
<td>45</td>
<td>Evergreen/mix forests.</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>Ukika</td>
<td>54°56'06.3" S 67°35'13.1" W</td>
<td>12</td>
<td>Evergreen/mix forests.</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Location</td>
<td>Coordinates</td>
<td>Count</td>
<td>Vegetation Type</td>
<td>Description</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>-----------------------</td>
<td>-------</td>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>37</td>
<td>Navarino Port</td>
<td>54°55'42.5”N 68°20'08.9”W</td>
<td>10</td>
<td>Evergreen/mix forests</td>
<td>Coastal trail from Puerto Navarino to the west, Puerto Hambre</td>
</tr>
<tr>
<td>38</td>
<td>Navarino Port</td>
<td>54°56'41.6”N 68°19'39.9”W</td>
<td>206</td>
<td>Deciduous forests</td>
<td>Trail from Puerto Navarino to the west, Laguna de la Represa, N. pumilio forest</td>
</tr>
<tr>
<td>39</td>
<td>Navarino Port</td>
<td>54°58'24.5”N 68°17'51.4”W</td>
<td>571</td>
<td>Deciduous forests</td>
<td>Trail from Puerto Navarino to the west, Cerro de la Laguna del Medio, from the edge of the forest of N. antarctica to the ridge</td>
</tr>
<tr>
<td>40</td>
<td>Isorna Port</td>
<td>54°56'24.4”N 68°20'05.0”W</td>
<td>175</td>
<td>Deciduous forests</td>
<td>Trail from Laguna de la Represa to Puerto Isorna, old-growth forest of N. pumilio</td>
</tr>
<tr>
<td>41</td>
<td>Isorna Port</td>
<td>54°58'08.0”N 68°21'09.5”W</td>
<td>9</td>
<td>Peatlands/shrubs</td>
<td>Coastal rocks</td>
</tr>
<tr>
<td>42</td>
<td>Ukika</td>
<td>54°56'15.1”N 67°35'51.9”W</td>
<td>34</td>
<td>Evergreen/mix forests</td>
<td>Trail to the Rodeo south of Puerto Williams, N. pumilio forest, ground and slopes</td>
</tr>
<tr>
<td>43</td>
<td>Holger Islets</td>
<td>54°56'27.9”N 67°15'03.4”W</td>
<td>4</td>
<td>Evergreen/mix forests</td>
<td>South-facing bay with N. betuloides, Berberis ilicifolia and many lichens on the ground</td>
</tr>
<tr>
<td>44</td>
<td>Marchant Islet</td>
<td>54°56'017”N 67°40'31.4”W</td>
<td>5</td>
<td>Peatlands/shrubs</td>
<td>Coastline with rocks covered by lichens, no trees</td>
</tr>
<tr>
<td>45</td>
<td>Ukika</td>
<td>54°56'07.8”N 67°35'173”W</td>
<td>65</td>
<td>Evergreen/mix forests</td>
<td>Road from Bulnes to the south, disturbed forest of N. pumilio, slopes and soil</td>
</tr>
<tr>
<td>46</td>
<td>Snipe Islet</td>
<td>54°57'16.5”N 67°08'49.9”W</td>
<td>5</td>
<td>Evergreen/mix forests</td>
<td>N. betuloides forest in front of Snipe Island, old trunks, many fallen</td>
</tr>
</tbody>
</table>
CONCLUSIONS ABOUT THIS CATALOGUE

The lichen flora of South America is poorly known in general, both in tropical and extratropical areas. The region most comparable with Navarino in the austral zones could be the Falkland or Malvinas Islands. In size they are much larger but the climate is more extreme and there are no native trees, so epiphytic lichens appear only on shrubs, foreign trees or imported wood. Furthermore, they are approximately 600 km east of the mainland of South America. The whole of islands add up to a total land area of just over 12,000 km\(^2\), although the islands are spread out over an area about twice that size. Fryday et al. (2019) completed a catalogue of those islands comprising 393 taxa, of which 6 were infra-specific taxa (var. ssp. or forma) in 161 genera and 15 lichenicolous fungi in 12 genera. In total, 408 taxa of lichens and lichenicolous fungi. Of those, 150 were reported for the first time in the islands what confirms the previous comment.

The flora of lichens and lichenicolous from Navarino is composed at the moment of 608 taxa. Etayo and Sancho (2008) published the results of the lichenicolous fungi found there: 189 species of which 60 were described as new for science. In this paper dedicated to the lichen flora we add 3 new lichenicolous fungi, so 192 species of lichenicolous fungi are currently known from Navarino. Finally, we have found or recorded 416 species of lichenized fungi in this first report although we are convinced there are dozens of species that are waiting to be recorded.

In Fryday (2020, last updated 2008) there are many interesting data about lichens from southern South America and other Antarctic regions but most of the data are very old dating from the first botanists arriving there. For example, the checklist from L’Hermite contains less than one hundred taxa collected by Hooker and Taylor in 1844 and Hooker in 1847, the checklist from Cape Horn comprises 34 taxa studied by Müller in 1888. A larger number of taxa is, however, known from the Isla de los Estados: 230. Regarding the important recapitulatory study by Fryday (2020), the lichen flora from Isla Grande de Tierra del Fuego has 218 species. Since the last update of this list several papers have been published on Tierra del Fuego lichens and this number is most likely larger.

CATALOGUE

Acarospora badiofusca (Nyl.) Th. Fr.
Our specimen could be a form very reduced, almost without thallus, of this species.
12, on shore rocks, hb. Etayo 22531.

Agonimia tristicula (Nyl.) Zahlbr.
All samples are sterile, but thalli are very similar to European ones. It is a cosmopolitan species (Breuss, 2020).
5, on humus on boulder with *Leptogium mandonii*, hb. Etayo 22633. 29, on humus on mossy rock, hb. Etayo 22870.

Alectoria ochroleuca (Hoffm.) A. Massal.
With cylindrical (< 1 mm diam.), yellow coloured laciniae. On alpine soil forming small cushions. Recorded by Redón and Quilhot (1977) and Quilhot et al. (2012) from Navarino.
21, alpine soil, hb. Etayo 22731. 31, alpine soil, hb. Etayo 22905 (UMAG).
Alectoria sarmentosa (Ach.) Ach.

With postrate and yellow coloured thallus growing on soil, laciniae slightly applanate to 2 mm wide. On soil on horizontal rocks close to shore.

12, schistose rock near the shore, hb. Etayo 22539.

Alyxoria culmigena (Lib.) Ertz

Opegrapha herbarum Mont.

Our collections fit well with the concept of this species (Ertz, 2009; Smith et al. 2009 as *O. herbarum*) except for its dark brown exciple that do not react with K a character probably not determinant.

Amandinea punctata (Hoffm.) Coppins & Scheid.

Some of the samples could be related to other similar species, viz.: *A. mediospora* Marbach and *A. subduplicata* (Vainio) Marbach, living in tropical mountains (Marbach, pers. comm.).

Recorded from the Falkland Islands (Fryday et al. 2019) on wood. Here also collected on twigs and trunks of *Nothofagus*.

Anisomeridium macrocarpum (Körb.) V.Wirth

With asci 76–80 x 27–32 μm and hyaline, later brown, ascospores, 1–3-septate, 33–35 x 9–11 μm. A similar sample with smaller spores, 22–29 x 6–7 μm, is included here.

2, on *N. pumilio*, hb. Etayo 24655. 17, on *N. pumilio*, hb. Etayo 22266. 43, on twigs of *Berberis*, hb. Etayo 24537.

Anisomeridium polypori (Ellis & Everh.) M.E. Barr

28, on *Nothofagus* sp., hb. Etayo 22779.

Arthonia atra (Pers.) A. Schneid.

43, on twigs of *Berberis* with *Usnea* sp., hb. Etayo 24537.

Arthonia aff. arthonioides (Ach.) A.L. Sm.

2, on *N. pumilio*, hb. Etayo 24655. 17, on *N. pumilio*, hb. Etayo 22266. 43, on twigs of *Berberis*, hb. Etayo 24537.

Growing in rain protected, whitish parts of the bark of *N. pumilio* with *Chaenotheca trichialis*, *Chrysotrix candelaris* and *Alyxoria culmigena*.

Arthonia radiata *(Pers.) Ach.*

On thin twigs of *Berberis* near the shore, with *e.g.* *Lecanora confusa* and *Ramalina terebrata*. 28, on *Berberis microphylla*, hb. Etayo 22815.

Arthrorhaphis citrinella *(Ach.) Poelt*

Although not common on Navarino Island we found it always sterile as small yellow, sorediate thalli, directly on peaty soil. Bipolar, reaching tropical, mountain areas. 16, on alpine soil, hb. Etayo 22516, UMAG. 33, on alpine soil, with *Stereocaulon*, hb. Etayo 22917. *Ibidem*, J. Etayo, 15879 (MAF, UMAG).

Athallia holocarpa *(Hoffm.) Arup, Frödén & Søchting*

We can only confirm one saxicolous specimen from Caleta Honda, the other specimens need molecular confirmation.

5, thin, exposed twigs of *Berberis*, hb. Etayo 22623. 28, on twigs of *Berberis microphylla*, hb. Etayo 22815. Caleta Honda 54.9153° S, 68.2259° W, vertical, N-exposed, shaded rock, 200 m from the sea. 1 February 2015, U. Søchting 12342 (C).

Austromelanelixia subglabra *(Räsänen) Divakar, A. Crespo & Lumbsch*

Austroplaca ambitiosa *(Darb.) Søchting, Frödén & Arup*

Recorded as *Caloplaca hookeri* (C.W. Dodge) Søchting, Øvstedal and Sancho in Etayo and Sancho (2008), but *C. hookeri* has so far not been found on Navarino Island.

Austroplaca cirrochrooides *(Nyl.) Søchting, Frödén & Arup s.lat.

Caloplaca cirrochrooides Nyl.

This species aggregate includes several more or less cryptic species characterized by yellow, lobate and sorediate thalli. Habitually sterile, considered by Øvstedal and Lewis Smith (2001) to be an Antarctic endemic. Ours records fit well with the ecology of the species recorded on shore rocks with species of *Buellia*, *Teloschistaceae* and *Verrucaria*. Recorded earlier by Etayo and Sancho (2008).

Austroplaca darbishirei (C.W. Dodge & G.E. Baker) Søchting, Frödén & Arup

Caleta Honda, 54.9187° S, 68.2140° W, 40 m, E-exposed, eutrophicated concrete in pasture. 1 January 2015, U. Søchting 12344 (C).

Austroplaca millegrana (Müll. Arg.) Søchting, Frödén & Arup s.lat.

Caloplaca millegrana (Müll. Arg.) Zahlbr.

This species includes several more or less cryptic species and was recorded by Etayo and Sancho (2008) from Navarino.

Austroplaca sibirica (H. Magn.) Søchting & Arup

This is a bipolar lichen that has been collected in Navarino on detritus, mosses and even as lichenicolous on *Peltigera collina* (Søchting & Arup, 2021).

Austroplaca soropelta (E.S. Hansen, Poelt & Søchting) Søchting, Frödén & Arup

A saxicolous, sorediate species that was recorded from Navarino by Søchting and Castello (2012).

Bacidia cf. absistens (Nyl.) Arnold

We found this species on damaged *Peltigera*. With an intensely blue green epithecium, colorless hypothecium and reddish and hyaline exciple in section. Ascospores are acicular, 7–10(–14) septate, 30–40(–47) x 2.5–3.5 μm. According to Smith *et al.* (2009) ascospores of *B. absistens* are 45–80 μm long.

Bacidia absistens typically grows on acidic bark in old woodlands and has a wide distribution (Smith *et al.* 2009).

7, on *Peltigera collina* growing on *Nothofagus*, hb. Etayo 22706 (det. Llop).

Bacidia bagliettoana (A. Massal. & De Not.) Jatta

Our samples were growing on *Bolax* and are identical to samples from the Spanish Pyrenees: crustose, poorly developed thallus, black apothecia with margin, brown reddish exciple, lighter in the centre, and blue green epithecium, N+ purple with blue crystals between the paraphyses and apex of the asci. Ascospores 24–37 x 2.5–3.5 μm, with 3–6 septa. Sample hb. Etayo 23232 growing on bryophytes with *Austroplaca sibirica*, differs in having algae inside the exciple, 3–7 septate, curved spores, 25–32 x 2.5–3 μm and pigments similar to those of *B. absistens*.

Øvstedal and Lewis Smith (2001) recorded a muscicolous sample of *B. bagliettoana* from Antarctica. According to their description apothecia are light brown with a pruinose bluish white margin, brownish epithecium, colorless hypothecium and exciple, and acicular ascospores with 14–16 septa. These characters are different from our species and closer to the Antarctic *B.
tuberculata Darb., that must be a similar species to B. bagliettoana.

Bacidia sp. A (Fryday, 2019a) growing on *Empetrum nigrum* stems in the Falkland Islands has larger spores, 50–65 long.

Bacidia circumspecta (Nyl. ex Vain.) Malme

Forming small thalli between *Parmeliella concinna*. Ekman (1996) indicated it has a Panamerican and European distribution but avoids the colder regions of North and South America.

2, on *N. pumilio*, hb. Etayo 24649.

Bacidia aff. coprodes (Körb.) Lettau

Thallus granulose to areolate, areoles with slightly raised margins, greenish, K+ yellow. Apothecia light brown to black, 250–450 µm, margin lighter than disk, hardly prominent, disc flat to slightly convex. Exciple green-brown, textura obliterata with thick-walled hyphae. Hypothecium dark brown. Epithecium greenish. Hymenium 50–70 µm tall. Paraphyses conglutinate, sometimes bifurcate, c. 1 µm thick, capitate to 1.5–2.5 µm wide. Ascii 8-spored, 50–65 x 8–10 µm, between *Bacidia* and *Biatora*-type. Ascospores spirally arranged in asci, colorless, straight and bacilliform to curved or vermiciform, 5–7-septate, (20–)22–30.5 x 2.5–3.6 µm.

Morphologically like *B. coprodes*, a saxicolous species known from Europe, North America and Antarctica, but ascospores are longer and more septate than in this species. A study of this species appears in Llop and Ekman (2007). The corticolous *B. subincompta* is also similar except for the not bifurcate paraphyses and not vermiciform ascospores.

Growing on pebbles in a stream together with *Verrucaria margacea*. None of the species described and keyed out from the Falkland Islands (Fryday, 2019a) fits well with this one.

25, on stream pebbles, hb. Etayo 22850 (UMAG, det. Llop).

Bacidia aff. delicata (Larbal. ex Leight.) Coppins

Thallus with delicate, branched to coralloid isidia. Apothecia white to beige, to 1 mm diam. All parts in section are colorless. Exciple and hypothecium thick, prosplechtenchymatic with cells with thick wall except for the external ones. Hymenium c. 80 µm. Ascospores acicular, 58–70 x 2–3 µm, wider in one end.

Apparently, our specimen is similar to *B. delicata*, whose apothecia, hymenium and ascospores are, however, bigger. Furthermore, it grows on clay soil together with *Psoroma* spp. and *Cladonia* spp. instead of being corticolous or rarely saxicolous on calcareous rock and stonework (Coppins & Aptroot in Smith *et al.* 2009)

42, on clay soil, hb. Etayo 24696.

Baeomyces rufus (Huds.) Rebent.

We found two small, sterile thalli of this species, parasitized and degraded by *Epilichen scabrosus*. Similar thalli were recorded by Søchting *et al.* (2004) in Antarctica (South Bay).

Bellemerea sanguinea (Krempelh.) Hafellner & Roux

Our sample has an almost black thallus, cracked, very thin and immersed, brown apothecia, without algae below hypothecium and reddish brown epithecium.

25, on torrent pebbles, hb. Etayo 22851.
Bibbya bullata (Meyen & Flot.) Kistenich, Timdal, Bendiksby & S. Ekman
Tonina bullata (Meyen & Flot.) Zahlbr.
Widely distributed in the Southern Hemisphere. Timdal (1991) recorded it from Antarctica and Tierra del Fuego without specific locations.
14, on humus and bryophytes on subvertical, shaded walls, hb. Etayo 22201. 37, outcrop near the sea, J. Etayo 22990 (MAF); U. Søchting 10204 (C).

Bilimbia sp.
On Peltigera collina together with Bacidia absistens; thallus grey, granulose; apothecia reddish to dark brown with a prominent margin that is darker than the convex disk; exciple colorless except for a greenish brown rim, textura oblita, with thick walled hyphae, 8–12 x 1–1.5 µm with subglobose end cells. 3–4 µm wide; hypothecium colorless, paraplechtenchymatous; hymenium colorless, 60–70 µm tall; epithecium green; paraphyses bifurcate to branched, not anastomosing, 1–1.5 µm thick, with subglobose apical cells, 4–6 µm diam. Asci 8-spored, clavate, 50–55 x 8–10 µm, Byssoloma-type; ascospores colorless, elipsoid, wider in one end. 3-septate, with a thin gelatinous sheath when young, then verruculose, 13.3–22.5(–25) x 2.8–4.4 µm.

Seems to be related to B. lobulata, but with a less well-developed thallus.
7, on Peltigera collina on N. pumilio, hb. Etayo 22706 (det. Llop).

Blastenia circumpolaris Søchting, Frödén & Arup
Described by Arup et al. (2013). Forming small thalli between other crustaceous lichens, even over foliaceous lichens like N. antarcticum, with very small, orange, round soralia on a thin and whitish thallus. Circumpolarantarctic.

Bogoriella hemisphaerica (Müll. Arg.) Aptroot & Lücking
Mycomicrothelia hemisphaerica (Müll. Arg.) D. Hawksw.
Our sample fits well with this taxon, but the centrum is KI+ light blue and the excipular wall is K-. Paraphyses trabeculate, c. 1 µm thick, 8-spored asci and brown, 1-septate ascospores of unequal cells, 22–27(–30) x 8–11 µm.
10, bark of N. betuloides, hb. Etayo 22239. 39, bark of Nothofagus sp., hb. Etayo 23064.

Brigantiaea fuscolutea (Dicks.) R. Sant.
Common on alpine soils of Navarino Island and inside the woodlands on the base of mossy trunks. Here apothecia usually are deformed, subglobose and without margin. In transversal section these structures are made by a hyphal net mixed with crystals, but reproductive structures are not observed. They could ressemble badly developed thalli of B. austroamericana (Räsänen) Hafellner, a corticolous and muscicolous species common in woodlands of Nothofagus from South America.

Bryobilimbia australis (Kantvilas & Messuti) Fryday, Printzen & S. Ekman

Recorded from the Falkland Islands by Fryday et al. (2019).

3 and 11, A. Gómez-Bolea s.n. (BCN–lich.).

Bryobilimbia hypnorum (Lib.) Fryday, Printzen & S. Ekman

Mycobilimbia hypnorum (Lib.) Kalb & Hafellner

Our samples were growing on dry grass in the alpine belt and are very similar to European ones. Very characteristic by their abundant, black ascomata with a neat margin, hymenium with many blue-purple crystals, K+ intensely green. Growing with *Lecanora epibryon*. Fryday (2019b) recorded *B. australis* from the Falkland Islands, but that species has a different apothecial formation with apothecia forming large, blackberry-like clusters (Fryday et al. 2014). *B. hypnorum* was known especially from the Northern Hemisphere, but has also been recorded from Antarctica (Øvstedal & Lewis-Smith, 2001).

4. on grassy and mossy soil, hb. Etayo 22419. 33. on decomposing plants, hb. Etayo 22923. (det. Z. Palice).

Bryoria cf. austromontana P.M. Jørg. & D.J. Galloway

We found a terricolous species, with laciniae to 1 mm wide, with or without foveolae, K-, similar to *B. austromontana* recorded in the Falkland Islands (Fryday et al. 2019b; Orange, 2016). However, this species has a K+ red thallus. *Bryoria forsteri* Olech & Bystr., is also K- and occurs on soil in King George Island (Olech & Bystrek, 2004). Further studies are required to know well this taxon. Quilhot et al. (2012) recorded *Bryoria chalybeiformis* (L.) Brodo & D. Hawksw. from Navarino, species that could be the same treated here.

Buellia discreta Darb.

With *Lecanora rupicola* on rocks near to the coast. Recorded from the Falkland Islands (Fryday, 2019a; Fryday et al. 2019) as endemic.

12. on rocks near the coast, hb. Etayo 22533, 22542.

Buellia nitrophila Zahlbr.

With sunken apothecia in a crustose, grey colored, areolate thallus with I- medulla, subhymenium inspersed, ascospores polarilocular when young. Recorded from the Falkland Islands (Fryday, 2019a).

5. outcrop 10 m a.s.l, hb. Etayo 22675.

Buellia aff. pulverea Coppins & P. James

With granular thallus, thick, dull green grey to dark brown, with irregular soralia, 20–50 µm, lighter green to brown, C+ reddish, UV+ yellow, P- to yellowish, with apothecia amongst soralia. Apothecia abundant, black, flat, with a thin border, 100–180 µm diam.
It is abundant on dusty trees, especially at the base, with *Candelariella magellanica, Pseudocyphellaria coriifolia* and *Polycauliona candelaria*. *Buellia pulverea* has so far only been reported from Europe (Smith et al. 2009).

42, old *N. pumilio* near the track, hb. Etayo 24676 (hb. Galloway).

Buellia sp.

Thallus yellowish, thin, rimose. Ascomata black, not pruinose, firstly flat then convex, 0.3–0.8 mm diam. with a concolorous border, 50–60 μm thick. Basal exciple 40–50 μm thick, prosplechtenchymatous, dark brown, K- surrounded internally by a chondroid, hyaline row of hyphae, 10–15 μm wide. Lateral exciple formed by subglobose cells similar to those of the epithecium. Hymenium hyaline, completely inspersed, 110–120 μm high. Paraphyses simple, rarely branched, 1.5–2 μm wide, hyaline but capitate, brown, 3–5 μm wide. Hypothecium very thick, 200–250 μm. Asci subclavate, 8-spored. Ascosporas brown, polarilocular, with a thick and dark septum (*Orcularia*-like), straight, with obtuse ends or one acute end, with smooth surface, very fragile, sometimes broken. (15–16–19(–21) x (7–8)–9(–10) μm (23).

Growing on young cortex of *Nothofagus*. We found two similar specimens with large ascospores (description) and smaller 14–16.5 x 6.5–7 μm. This is one of the species of *Buellia* with polarilocular spores similar to *Caloplaca*. Some species probably related with ours appear in Fryday (2019a), e.g. *B. nitrophila* or *B. falklandica* Darb., but those species are saxicolous.

Byssoloma marginatum (Arnold) Sérusiaux

Our specimens are like this species but the hypothecium is dark brown to blackish, K-, and ascosporas 3–4(–7) septate, 15–22(–33) x 4–4.5 μm. For the moment we think this is the best name for our species.

36, on young *Nothofagus*, hb. Etayo 22926.

Calicium abietinum Pers.

Very characteristic by its large ascomata without pruina and ascospores large with granulose ornamentation.

5, fallen wood, hb. Etayo 22620. 9, wood, J. Etayo 22724 (UMAG).

Calicium adspersum Pers.

With yellow pruina on mazaedia, and ascospores with spirally arranged ridges it belongs to this species. Tibell (1984, 1987) described the ssp. *australe* known from New Zealand and Australia (also Southern South America in Smith et al. 2009) with larger ascomata (11–2 mm high), thallus K+ red and ascospores 9.5–11 x 4–5 μm. Our samples, however, have thallus K-, ascomata are smaller, 0.6–0.8 mm high, 0.5–0.8 mm wide and stalk 0.2–0.25 mm thick, more similar to ssp. *adspersum* known in Northern Hemisphere, but ascospores 8–11.5 x 3.5–4.5 μm are closer to ssp. *australe* than ssp. *adspersum*, with larger ascospores (12–14.5 x 5.5–6.5 μm).

8, wood of *Nothofagus*, hb. Etayo 22230. 34, on old bark of *N. pumilio*, hb. Etayo 23057.

Calicium glaucellum Ach.

We found this species at several occasions together with *C. adspersum* and a white *Micarea aff. alabastrites* on *Nothofagus*.

/ 28
2. wood of *Nothofagus*, hb. Etayo 24640. 34, on old bark of *N. pumilio*, hb. Etayo 23057; *ibidem*, J. Etayo 23059 (MAF).

Calicium salicinum Pers.
According to Tibell (1987) it is known in the Southern Hemisphere from Australia, New Guinea, New Zealand, Tasmania, Africa and South America.

We found it on old bark of *N. pumilio* especially under overhangs with *Arthonia* aff. *arthonioides* and *Chrysothrix candelaris*.

6, on old bark of *Nothofagus*, hb. Etayo 22643 (UMAG), J. Etayo 22644 (MAF). 8, on bark overhangs of *Nothofagus*, hb. Etayo 22710. 38, on old bark of *N. pumilio*, J. Etayo, 22998 (UMAG).

Calicium viride Pers.
Found together with *C. salicinum*, but less abundant, in one shore locality on old and overhanging bark of *Nothofagus*. Recorded previously in Navarino by Redón and Quilhot (1977) and in Cape Horn Biosphere Reserve (Goffinet et al. 2012).

6, on *Nothofagus* sp., hb. Etayo 22662. 7, overhanging trunk of *N. pumilio*, hb. Etayo 22694; *ibidem* MAF 15882. 34, on old bark of *N. pumilio*, J. Etayo 23058 (UMAG). 38, on old bark of *N. pumilio*, hb. Etayo 22999 (UMAG).

Caloplaca phaeocarpella (Nyl.) Zahlbr.
Growing on thalli of *Psoroma* spp. and *Cladonia* squamules in slopes with *Bolax*. This species was known from North Asia and Greenland (Hansen et al. 1987). Its habitat is similar to *Caloplaca psoromatis* Olech & Søchting.

3, on thallus of *Psoroma hypnorum* on alpine soil with *Bolax*, hb. Etayo 22280. 3, on cushions of *Bolax*, J. Etayo 22293 (UMAG). 16, on *Psoroma hypnorum*, *P. cinnamomeum* and *Pannaria hispidula*, also on *Cladonia* on peaty soil, hb. Etayo, 22511 (MAF). 16, on dead *Bolax*, hb. Etayo 22509. 39, on dead *Bolax* with *Leconora epibryon*, J. Etayo 23027 (UMAG).

Caloplaca tornöensis H. Magn.
Living on bryophytes, and characterized by its apothecia with orange disk and black margin, bluish black exciple without algae, and ascospores 15–21 x 6–6.5 μm with a thin septum.

31, bryophytes on soil, hb. Etayo 22907.

Candelariella magellanica Etayo, sp. nov.
Mycobank: MB842282

Diagnosis: It differs from *C. xanthostigmoides* by its larger apothecia to 0.4 mm diam., asci 4–8-spored and ascospores larger (0–)1(–2) septate, (12–)14–19(–21) x (4.5)5–8(–10.5).

Thallus sorediate, yolk coloured, *K*-, formed by minute areoles (0.1–0.4 mm diam.), dissolved into soredia, 20–50 μm diam. Biatorine exciple. Algae round, 10–15 μm diam. Ascomata sessile amongst soralia, 0.3–0.55 mm diam., yolk coloured, initially flat, soon convex, with initially prominent, then disappearing margin, becoming granular-sorediate, concolorous with thallus. Hymenium 80–90 μm tall. Paraphyses simple, septate, 1.5–2 μm wide, hardly capitate upwards.
Epitheicum with yellow crystals, K-. Asci 4–8-spored, clavate to widely subglobose with a long foot, 40–60 x 14–20 µm. Ascospores of variable shape, elongate to broadly ellipsoidal, with obtuse ends, straight, rarely slightly curved, (0–)1(–2)-septate; septa centered or near the ends (when two), normally with one large oil drop in each cell, (12–)14–19(–21) x (4.5)5–8(–10.5) µm (52).

Candeliarella xanthostigmoides (Müll. Arg.) R.W. Rogers is most similar to our species but has smaller apothecia to 0.25 mm, 8-spored and smaller asci, 30–35 x 12.5–15 µm, and always simple spores, 12–15 x 5–6 µm (Filson, 1992; Rogers, 1982). Lately, Lendemer and Westberg (2010) studied some North American specimens attributed to this species and reported spores a bit larger, [11]–(11.2)–13.3–(15.4)–[17.7] x [3.8]– (4.2)–5.0–(5.9)–[7.2] µm. Westberg (2005) wrote that one thin septum is common in several species; however, septate spores have never been reported in *C. xanthostigmoides*. Furthermore, the septum (or rarely septa) in *C. magellanica* is as thick as the spore wall even inside the ascus and fairly frequent. 77% of spores are 1-septate, 4% spores are 2-septate and only 19% spores are simple. Some of them could be hypermature, but we have hardly observed germinating spores. Another strange feature of this species is the very variable morphology of spores from long and thin to wide and short.

Candeliarella reflexa (Nyl.) Lettau, is a European species similar to *C. xanthostigmoides* but without a sorediate apothecial margin and simple and smaller spores, 10–16 x 4.5–5.5 µm. This species and other related as *C. sorediosa* Poelt & Reddi (Poelt & Reddi, 1969) need to be studied more detailed but in all cases ascospores seem to be more similar to *C. xanthostigmoides* than to *C. magellanica*.

Candeliarella magellanica grows directly on the cortex of *Nothofagus* or over other crustaceous lichens, more rarely on foliaceous ones like (Fig. 17) *Pseudocyphellaria coriifolia*, and seems to be relatively common (although generally sterile) in Navarino.
15, bark of *N. pumilio*, hb. Etayo 22490 (sterile). 42, on old, dusty bark of *N. pumilio* near the track, hb. Etayo 24676 (sterile). 2, on *N. antarctica*, hb. Etayo 22178 (fertile). 14, on *N. pumilio* between *Peltigera collina* and *Leptogium* sp., hb. Etayo 22214 (sterile).

Candelariella vitellina (Ehrh.) Müll. Arg.
Recorded by Etayo and Sancho (2008).
5, rock 10 m. a.s.l., hb. Etayo 22657 (UMAG).

Carbonea vorticosa (Flörke) Hertel
Bipolar species known from the Southern Hemisphere in maritime and continental Antarctica (Øvstedal & Lewis Smith, 2001).
2, on ground pebbles, hb. Etayo 24672 (MAF, UMAG).

Catapyrenium cinereum (Pers.) Körb.
Bipolar species known from Tierra del Fuego and Antarctica (Søchting et al. 2004).
31, on soil, hb. Etayo 22912.

Catenarina vivasiana Søgaard & Søchting
This species that grows on maritime rocks was recorded from Navarino by Søchting et al. (2014).

Cetraria aculeata (Schreb.) Fr.
Coelocaulon aculeatum (Schreb.) Link
Bipolar species even living in Antarctica (Søchting et al. 2004). Recorded by Redón and Quilhot (1977), Quilhot et al. (2012), Etayo and Sancho (2008), Laguna-Defior (2017) and Lagostina et al. (2021) from Navarino.

Cetraria ericetorum Opiz
Recorded by Laguna-Defior (2017) from Navarino.

Cetraria islandica (L.) Ach.
Loc 18, on soil, J. Etayo 15886 (MAF, UMAG).

Cetraria islandica ssp. *antarctica* Kärnef.
Common on alpine soils mixed with other terricolous lichens. Recorded by Etayo and Sancho (2008) in Navarino and in Cape Horn Biosphere Reserve (Goffinet et al. 2012). (Fig. 18).

Chaenotheca brachypoda (Ach.) Tibell
Chaenotheca furfuracea (L.) Tibell is morphologically similar and appears between Santesson records from Navarino (Fryday, 2020), however, Tibell (1987) discussed the differences between these two species and pointed out that the Southern Hemisphere samples belong to *C. brachypoda*. However, one of our samples was sterile, yellow, with *Stichococcus* in the thallus, growing on shaded rocks, and could belong to *C. furfuracea*.
Recorded by Tibell (1987) from the Southern Hemisphere in Australia, New Zealand and Tasmania.

2, on stones in the forest, hb. Etayo 24665. 7, on overhangs bark of *N. pumilio*, J. Etayo 22687 (UMAG). 26, on wood, hb. Etayo 22955; *ibidem*, J. Etayo 22969 (MAF).

Chaenotheca chrysocephala (Turn. Ex Ach.) Th. Fr.
It is easily distinguished by its intensely yellow colored thallus (vulpinic acid) and mazaedium pruina and by its coarsely ornamented, globose to ellipsoidal ascospores. This is a bipolar species, common throughout the Northern Hemisphere and also known in Australia, Africa and New Zealand (Tibell, 1987). We found one sample with *Stichococcus*, a vicariant phycobiont in the Southern Hemisphere as recorded in Tibell (1987).
26, on wood of *N. pumilio*, hb. Etayo 22954.

Chaenotheca hispidula (Ach.) Zahlbr.
Mixed with the much more common *Mycocalicium subtile* on overhanging bark of *Nothofagus*. It is distinguished from other similar species by its thin ascomata with yellow pruina and large ascospores, 6–8 μm in diam., with reticulate fissures. Recorded by Etayo and Sancho (2008) as lichenicolous on large foliose thalli.
8, on overhanging bark of *Nothofagus* sp., hb. Etayo 22709 (MAF, UMAG); *ibidem* hb. Etayo 22710.

Chaenotheca stemonea (Ach.) Müll. Arg.
Distinguished by its greenish, leprose thallus, with *Stichococcus*, pruinose whitish stalk
and mazaedium and ascospores with irregular cracks, 3.5–4 µm diam. We found it growing on a sterile lichen with Trentepohlia.

Cosmopolitan; known from tropical America from mountains of Venezuela (Tibell, 1996).

2, on N. pumilio, hb. Etayo 22182.

Chaeonotheca trichialis (Ach.) Th. Fr.
A variable species in Navarino woods; some samples have a thallus made up by convex, whitish squamules with granulose surface as already recorded by Tibell (1987). It seems common in underhangs of leaning trunks and wood of Nothofagus.

Chaenothecopsis pusilla (Ach.) A. Schmidt
We found it associated with Lecanactis fraudans and Chrysothrix candelaris.

Chroodiscus australis Kantvilas & Vézda
Recorded by Etayo and Sancho (2008) growing on Ochrolechia. The sample recorded here was growing on wood.

2, on wood in the soil, hb. Etayo 24638 (MSC0086669).

Chrysothrix candelaris (L.) Laundon
It is very common in underhangs of leaning Nothofagus, especially old trunks of N. pumilio, protected from the water. Recorded already by Santesson in Fryday (2020), Etayo and Sancho (2008), Rozzi et al. (2012b) and Trest et al. (2015) from Navarino.

1, on old N. pumilio, J. Etayo 22135 (UMAG). 6, on bark of old Nothofagus, hb. Etayo 22643 (UMAG), ibidem, J. Etayo 22644 (MAF). 7, on old bark of N. pumilio, J. Etayo 22701 (MAF). 8, on underhangs of N. pumilio, hb. Etayo 22227, 22228; ibidem, MAF16088, 15654, 15728, 15747 (UMAG), 22709; ibidem hb. Etayo 22710, 22717. 11, on underhangs of leaned N. pumilio, hb. Etayo 22258. 34, on old bark of N. pumilio, J. Etayo 23058 (UMAG). 36, on old bark of Nothofagus sp., hb. Etayo 22933. 42, on old and dusty N. pumilio near the track, J. Etayo 24677 (UMAG).

Chrysothrix chlorina (Ach.) J. R. Laundon
Bipolar species, also recorded from Antarctica (Øvstedal & Lewis Smith, 2001).

28, on outcrops near seashore, J. Etayo 22798 (MAF, UMAG).

Cladia aggregata (Sw.) Nyl.
Previously recorded in Navarino by Burgaz and Raggio (2007).

22, on soil on an outcrop, J. Etayo 22771 (UMAG). 43, on soil, hb. Etayo 24531 (UMAG).

Cladonia acuminata (Ach.) Norrl.
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia arbuscula ssp. arbuscula (Wallr.) Flot. s.lat.
Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007).
Cladonia asahinae J.W. Thompson
Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007). Recorded also in Cape Horn Biosphere Reserve (Goffinet et al. 2012).

Cladonia aueri Räsänen
Recorded from Navarino by Stenroos (1995).

Cladonia bacilliformis (Nyl.) Glück
Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007).

Cladonia bellidiflora (Ach.) Schaerer
Previously recorded in Navarino by Burgaz and Raggio (2007).
4, on acidic soil, hb. Etayo 22442.

Cladonia borealis Stenroos
Previously recorded in Navarino by Burgaz and Raggio (2007).
4, on acidic soil, hb. Etayo 22443. 38, on humus on rock, J. Etayo 23011 (UMAG). 39, on soil, hb. Etayo 23065.

Cladonia carneola (Fr.) Fr.
Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007).

Cladonia cenotea (Ach.) Schaer.
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia cervicornis ssp. mawsonii (C.W. Dodge) S. Stenroos & Ahti
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia chlorophaea (Flörke ex Sommerf.) Spreng.
Previously recorded in Navarino by Stenroos (1995, Redón and Quilhot (1977) and Burgaz and Raggio (2007).

Cladonia cornuta (L.) Hoffm.
Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007) and in Cape Horn Biosphere Reserve (Goffinet et al. 2012).

Cladonia cryptochlorophaea Asahina
Previously recorded in Navarino by Burgaz and Raggio (2007), as the first Chilean record.

Cladonia farinacea (Vain.) A. Evans
Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007).

Cladonia fimbriata (L.) Fr.
Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007).

Cladonia furcata (Huds.) Schrad.
Recorded by Etayo and Sancho (2008).
4, on acidic soil, hb. Etayo 22443. 16, on peaty soil, hb. Etayo 22512. 21, on peaty soil, hb. Etayo 22741.
Cladonia gracilis ssp. gracilis (L.) Willd.
Previously recorded in Navarino by Stenroos (1995), Burgaz and Raggio (2007) and Etayo and Sancho (2008). It forms large and convex cushions with many podetia (Fig. 19).

Cladonia gracilis ssp. elongata (Wulfen) Vainio

26, on soil, hb. Etayo 22977 (UMAG).

Cladonia humilis (With.) J.R. Laundon
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia laevigata (Vain.) Gyeln.
Previously recorded in Navarino by Stenroos (1995).

Cladonia lepidophora Ahti & Kashiw.
Previously recorded in Navarino by Santesson in Fryday (2020) and by Burgaz and Raggio (2007) in its three chemical types (I, II and III).
Cladonia luteoalba Wheldon & A. Wilson
Previously recorded in Navarino by Burgaz and Raggio (2007).
23, on sandy soil, hb. Etayo 22763.

Cladonia macilenta Hoffm.
 Previously recorded in Navarino by Burgaz and Raggio (2007) in its chemical types I and II.
29, on fallen trunk of Nothofagus, hb. Etayo 22869.

Cladonia macrophyllodes Nyl.
 Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia mitis Sandst.
 Cladonia arbuscula (Wallr.) Flotow var. mitis Sandst.
 Previously recorded in Navarino by Ruoss and Ahti (1989) as C. arbuscula var. mitis and also recorded by Redón and Quilhot (1977), Stenroos (1995), Burgaz and Raggio (2007) and Quilhot et al. (2012).
 The subspecies squarrosa (Wallr.) Ruoss, characterized by the absence of rangiformic acid has been recorded from Argentinian Tierra del Fuego, so it may occur in Navarino too.
11, on acidic soil with C. rangiferina, J. Etayo 22251 (UMAG). 18, on peaty soil, hb. Etayo 22586. 31, on soil, J. Etayo 22908 (MAF); ibidem, hb. Etayo 22909.

Cladonia novochlorophaeo (Sipman) Brodo & Ahti
 Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia ochrochlora Flörke
 Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007).

Cladonia phyllophora Hoffm.
 Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia pleurota (Flörke) Schaerer
 Previously recorded in Navarino by Burgaz and Raggio (2007).
11, bog, hb. Etayo 22246 (MAF).

Cladonia pocillum (Ach.) Grognot
 Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia pyxidata (L.) Hoffm.
 Previously recorded in Navarino by Burgaz and Raggio (2007) and as C. aff. pyxidata by Etayo and Sancho (2008).
29, on humus on outcrop, J. Etayo 22884 (MAF). 42, on base of N. pumilio, hb. Etayo 24689.

Cladonia rangiferina (L.) Weber ex Wigg.
 Previously recorded in Navarino by Stenroos (1995), Burgaz and Raggio (2007) and Rozzi et al. (2012b). Recorded also from Cape Horn Biosphere Reserve (Goffinet et al. 2012).
Cladonia rigida (J.D. Hooker & Taylor) Hampe
Previously recorded in Navarino by Stenroos (1995).

Cladonia sarmentosa (Hook f. & Taylor) C.W. Dodge
Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007).

Cladonia scabriuscula (Delise) Nyl.
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia squamosa (Scop.) Hoffm.
Previously recorded in Navarino by Stenroos (1995) and Burgaz and Raggio (2007).

Cladonia subchordalis A. Evans
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia subsquamosa Kremp.
Previously recorded in Navarino by Burgaz and Raggio (2007). We found the chemotype with thamnolic acid.

Cladonia subsululata Nyl.
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia subulata (L.) F.H. Wigg.
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia sulphurina (Michaux) Fr.
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia symphycarpa (Flörke) Fr.
Previously recorded in Navarino by Burgaz and Raggio (2007).

Cladonia ustulata (Hook. F. & Taylor) Leight.
Previously recorded in Navarino by Burgaz and Raggio (2007). Recorded also from Cape Horn Biosphere Reserve (Goffinet et al. 2012).

Coccotrema corallinum Messuti
Previously only known from Argentinian Tierra del Fuego (Messuti & Vobis, 2002).
21, on plant remains on upper side of rock. hb. Etayo 22743.

Coccotrema cucurbitula (Mont.) Müll. Arg.
It is a common species growing on Nothofagus in Navarino, usually together with Pertusaria microcarpa. More rarely it was saxicolous as also observed by Messuti and Vobis (2002). It has been recorded by Etayo and Sancho (2008) and Quilhot et al. (2012) from Navarino.
11, on *N. pumilio*, hb. Etayo 22255. 22460. 17, on *N. pumilio*, hb. Etayo 22265 (UMAG).

Coelopogon epiphorellus (Nyl.) Brusse & Kärnefelt

Austral species that reaches Antarctica growing on saxicolous mosses (Søchting et al. 2004). In Navarino it is commonly growing on *Nothofagus* trunks, sometimes covering large surfaces of the trunk, less common on rocks near the shore. Rarely, we have collected samples with large, grey soralia that could belong to *C. abraxas* Brusse a species recorded in the Falkland Islands (Fryday et al. 2019).

Previously recorded in Navarino as *Coelopogon* spp. by Redón and Quilhot (1977), and also by Santesson in Naturhistoriska riksmuseet (2021), Trest et al. (2015), Etayo and Sancho (2008) and Quilhot et al. (2012).

Coenogonium pineti (Ach.) Lücking & Lumbsch

Dimerella pineti (Ach.) Vezda

Found only once, growing in bark fissures of *Nothofagus*.

38, on *Nothofagus*, hb. Etayo 23012.

Collemopsis halodytes (Nyl.) Grube & B.D. Ryan

Probably cosmopolitan (Smith et al. 2009), it has not been recorded before in southern Chile but in the Falkland Islands (Fryday et al. 2019).

44, on *Balanus* on seashore rocks, hb. Etayo 24489.

Cyanisticta obvoluta (Sw.) C.W. Dodge

Pseudocyphellaria obvoluta (Sw.) Malme

Unmistakable due to its hairy surface and abundant apothecia. A Valdivian magellanic species, typically epiphytic, known from the south of Chile and Argentina (Galloway, 1986). In Navarino it appears dispersed and is never abundant. Collected by Santesson in Fryday (2020) in Hoste. Recorded from Navarino by Redón and Quilhot (1977), Galloway (1992), Galloway et al. (1995), Etayo and Sancho (2008) and Quilhot et al. (2012) (Fig. 20).

Cystocoleus ebeneus (Dillwyn) Twaites

On steep walls forming small, black cushions on thalli of *Pannaria hispidulum*, *Pseudocyphellaria glabra*, *Parmelia saxatilis* and *Stereocaulon* sp., or directly on rock. Bipolar, reaches Antarctica (Olech, 2004).
6, on schists in subvertical walls, hb. Etayo 22655. 13, on subvertical rock growing on *Pseudocyphellaria glabra* and *Stereocalon* sp., hb. Etayo 22191, 22196. 28, on *P. saxatilis* on rocks, J. Etayo 22793 (MAF). 38, on *Lepraria* sp. and *Pannaria hispidulum* on humus on rock, J. Etayo 23011 (UMAG).

Degelia subcincinnata (Nyl.) P.M. Jørg.

On peaty soil or moist pebbles, usually without apothecia, only with abundant conidiomata and bacilliform conidia, 5–7 x 1–1.5 μm.

Dermatocarpon miniatum (L.) W. Mann

With an upper pruinose side, a lower smooth, and orange–brownish side and medulla I–; ascomata with hyaline exciple and ascospores 10–13 x 6–7 μm, it is very similar to European morphs of *D. miniatum*.

29, on subvertical seashore rocks together with *Phaeophyscia sciastra*, hb. Etayo 22871.

Dufourea australis (Zahlbr.) Frödén, Arup & Søchting

Samples recorded as *Xanthoria parietina* from Navarino by Etayo and Sancho (2008) on coastal rocks belong to this species.

28, on maritime rocks, U. Søchting 10347 (C). 29, coastal rocks, hb. Etayo 22874 (Fig. 21).

Endocena informis var. *informis* Cromb.

Described by Crombie (1876), it is a very characteristic lichen similar to a sterile *Ochrolechia*, with a white, bright, sublobulate and verrucose thallus that bursts in the apex of convex areoles.
exposing a sorediate zone inside, P+ intensely orange, K+ yellow. It is usually parasitized by a Lichenostigma-type fungus that causes a grey discoloration in the thallus. Together with Siphula it is common in the tundra of this zone. According to Fryday et al. (2017) there are two varieties, var. informis and var. falklandica Fryday, I. Schmitt & Pérez-Ort., common in the Falkland Islands but rare in Tierra del Fuego. This last one is distinguished by its crustose, sorediate thallus.

Epilichen scabrosus (Ach.) Clem.

With a yellowish thallus, UV+ yellowish, and black, convex apothecia, it grows on Baeomyces. Epithecium greenish and hypothecium dark brown. Ascospores brown, 1-septate, 10–12.5 x 6.5–7 μm. Differs from terricolous Buellia species in its branched-anastomosed paraphyses and parasitic life form.

We found it on Baeomyces on peaty soil together with Micarea magellanica and Ochrolechia sp. 16, peaty soil, hb. Etayo 22523.

Frutidella caesioatra (Schaer.) Kalb

Lecidea cf. caesioatra Schaer.

Thallus granulose, grey brown. Apothecia grey black, slightly white pruinose, convex, without margin. Hymenium greenish to greenish blue, K+ intensifying. Exciple of conglutinate

Fig. 21. Wet Dufourea australis growing on seashore rocks parasited by the lichenicolous fungus Arthonia sytnikii. Morphologically this species is similar to the holarctic common Xanthoria parietina. Photograph by Javier Etayo taken at the coast of Wulaia Couve on 24 January 2005.
hyphae. Paraphyses gelatinized of branched hyphae, slightly widened apically. Asci 8-spored and ascospores simple, colorless, then brownish, 10.5–17 x 5.5–7.5 μm.

Bipolar, known from the North of Europe and America and also from Antarctica (Øvstedal & Lewis Smith, 2001). Fryday \textit{et al.} (2019) recorded it from the Falkland Islands too.

\textbf{Fuscpannaria mediterranea (Tav.) P.M. Jørg.}

A corticolous species with bluish soralia. Already recorded from Tierra del Fuego (Jørgensen in Nash \textit{et al.} 2002).

\textbf{Fuscpannaria minor (Darb.) P.M. Jørg.}

With small hemisphaeric apothecia without or with a thin crenulate margin. Ascospores are ellipsoidal, some shortly mucronate, 14–17 x 7–7.5 μm. According to Jørgensen (1999) it is a corticolous species that was known from New Zealand and South America; we found it usually growing on \textit{Nothofagus} and bryophytes on peat.

\textit{Caloplaea sublobulata} (Nyl.) Zahlbr.

This is the most common species of \textit{Teloschistaceae} growing on seashore rocks. It has been recorded by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977), Etayo and Sancho (2008), Quilhot \textit{et al.} (2012) from Navarino and in Cape Horn Biosphere Reserve (Goffinet \textit{et al.} 2012).

\textbf{Gowardia nigricans (Ach.) Halonen}

\textit{Alectoria nigricans} (Ach.) Nyl.

Recorded by Redón and Quilhot (1977), Quilhot \textit{et al.} (2012) and Laguna-Defior (2017) from Navarino. We found it on alpine soil with \textit{Cetraria}, \textit{Hypogymnia} sp., \textit{Thamnolia vermicularis} and \textit{Protousnea} sp.

3, on alpine soil, hb. Etayo 22274. 4, on acidic soil, hb. Etayo 22414. 16, on \textit{Empetrum rubrum}, hb. Etayo 22525. 21, on alpine soil, J. Etayo 22730 (UMAG, MAF).

\textbf{Graphis scripta (L.) Ach.}

We found some small thalli on twigs of \textit{Berberis}.

43 on twigs of \textit{Berberis}, hb. Etayo 24538.

\textbf{Gyalectaria jamesii (Kantvilas) I. Schmitt, Kalb & Lumbsch}

\textit{Pertusaria jamesii} Kantvilas

A description of this corticolous, tiny species with small, yellowish apothecia, 8-spored asci and large ascospores 24–38(–40) x 14–21 μm, appears in Kantvilas (1990) and Messuti and
Vobis (2002). It is a corticolous species. Ascospores in our material are larger 38–47 x 19–22 µm and we found on several substrates even growing on lichens.

In our opinion there must be more than one species under this name. G. jamesii fit well with our corticolous and lignicolous samples. A similar taxon with 4-spored asci, Pertusaria gyractoides Vězda, known from New Guinea (Weber, 1971) has significantly larger ascospores, 45–64 x 25–32 µm and larger apothecia with the type growing on Trypethelium grossum. We found several samples growing on lichens and with 4-spored asci that could belong to that species. Recorded from Navarino in Etayo and Sancho (2008).

2, on wood of Nothofagus, hb. Etayo 24639. 17, on bark of N. pumilio, hb. Etayo 22266. 26, on wood of Nothofagus pumilio, hb. Etayo 22941. 27, on bark of Nothofagus, U. Søchting 10334 (C). 42, old N. pumilio near the track, J. Etayo 24679 (UMAG).

Other samples with 4-spored asci: 1, on Parmelia sulcata on N. pumilio, J. Etayo 22136 (UMAG). 6, on old bark of Nothofagus, J. Etayo 22648 (MAF). 11, on Pseudocyphellaria corifolia on N. pumilio, hb. Etayo 22463. 26, on old bark of Nothofagus sp., hb. Etayo 22961. 28, on Xanthoparmelia submougeotii on a boulder, hb. Etayo 22797. 38, on Pseudocyphellaria granulata on mossy trunk of N. pumilio, hb. Etayo 23005. 48, on squamules of Cladonia macilenta on N. pumilio, hb. Etayo 23106.

Haematomma erythromma (Nyl.) Zahlbr.

An endemic Antarctic-Subantarctic taxon (Søchting et al. 2004) relatively common on seashore rocks in Navarino.

Haematomma nothofagi Kalb & Staiger

Vobis *et al.* (1995) recorded *Haematomma hilare* Zahlbr. from Argentina, Chile and New Zealand. Staiger and Kalb (1995), however, distinguished this species as endemic from New Zealand and differentiated from *H. nothofagi*, an austral species growing in Australia, New Zealand and the southern regions of Argentina and Chile. In Chile it was recorded from La Araucania, Los Lagos, Magallanes and Tierra del Fuego. Redon and Quilhot (1977) recorded it as *H. puniceum* from Navarino where it does not seem to be very common on trunks and branches of *Nothofagus* in well preserved woods (Fig. 22).

Hafellia disciformis (Fr.) Marbach & H. Mayrhofer

Ascomata black, sessile, convex to subsphaerical, 0.4–0.7 mm diam. Hymenium inspersed with large crystals inside, paraphyses capitate, 3–6 μm. Asci 8-spored. Ascospores reniform, grey to brown, paler in the ends, wall thickened also in the ends, 20–25 x 8–11 μm. Navarino samples fit well with European samples, even with the Italian type (Marbach, pers. comm.).

Halecania fuscopannariae Etayo & van den Boom

Only known from one collection on the hypothallus of an unidentified *Fuscopannaria* growing on *Nothofagus pumilio*. Described in van den Boom (2009). Although considered a lichenicolous fungus, it was not recorded in Etayo and Sancho (2008) and belongs to a generally lichenized genus.

15, on hypothallus of *Fuscopannaria* on *N. pumilio*, hb. Etayo 22503.

Helocarpon crassipes Th. Fr.

We found granulate to sorediate, greenish colored thalli with sessile to shortly stipitate, black apothecia, without margin when mature; exciple made up of very thin, branched hyphae, only grey brown in the border (5–10 μm), hypothecium purple brown, K- or blue black; hymenium colorless, with very branched-anastomosed paraphyses, especially apically with a gelatinous, black to brown epihymenium, granulose, K-, 8-spored asci and simple, long ellipsoidal to fusiform ascospores, 16–22 x 4.5–6.5 μm.

Found together with *Cladonia* sp., *Endocena informis* and *Rimularia* sp. on soil or on bryophytes.

Heterodermia japonica (Sato) Swinscow & Krog

Cosmopolitan species that we found growing between other lichens like e.g. *Pseudocyphellaria coriifolia* or *Normandina pulchella*.

1, on *N. pumilio*, hb. Etayo 22134.

Heterodermia speciosa (Wulfen) Trevis.

We found only small thalli growing on a boulder together with *Physcia caesia*, *Pseudocyphellaria mallota* or *Ps. intricata*.

29, on a boulder inside the wood, hb. Etayo 22875.
Himantormia deusta (Hook. f.) A. Thell & Söchting

Nimisia fuegiae Kärnefelt & A. Tehl; Nimisia deusta (Hook. f.) Fryday

Records from Southern South America are cited in Elvebakk et al. (2014). Recorded by Etayo and Sancho (2008) and Laguna-Defior (2017) from Navarino.

16, on rocks, MAF 15902. 21, on rocks J. Etayo 22745 (UMAG). 22, on rocks, hb. Etayo 22772. 25, on rocks, hb. Etayo 22849 (UMAG). 31, on rocks, hb. Etayo 22914 (UMAG).

Hydropunctaria maura (Wahlenb.) C. Keller, Gueidan & Thüs

Verrucaria maura Wahlenb.

Recorded from Navarino by Redón and Quilhot (1977) and Quilhot et al. (2012).

5, on rocks splashed by seawater. hb. Etayo 22626 (UMAG).

Hypocenomyce scalaris (Ach.) Choisy

Thalli of this species from Navarino had abundant apothecia and were hardly sorediate squamules as recorded elsewhere (Purvis et al. 1992).

37, burnt wood of Nothofagus, hb. Etayo 22987, 22988 (UMAG).

Hypogymnia antarctica (Bitt.) Dodge

At least three species of lichenicolous fungi are able to grow on H. antarctica; some of them like Lichenocyonium erodens, are very destructive. The species is rare in Navarino possibly due to these parasites because the most common H. lugubris is not attacked by parasites in the island. It has been recorded by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977), Etayo and Sancho (2008) and Quilhot et al. (2012) from Navarino.

6, on Nothofagus sp., hb. Etayo 22667. 22, on mossy boulder, J. Etayo 22868 (MAF). 26, on N. pumilio, hb. Etayo 22949.

Hypogymnia austerodes (Nyl.) Räsänen

This species was recorded by Santesson in Fryday (2020) as collected in Navarino. We have not found it again.

Hypogymnia lugubris var. lugubris (Pers.) Krog

Really common in meadows and alpine soil, it grows also directly on small bushes of Empetrum. We found it with apothecia in areas near to sea. Recorded by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977), Quilhot et al. (2012) and Laguna-Defior (2017) from Navarino.

Hypogymnia lugubris var. sublugubris (Müll. Arg.) Elix

This variety is habitually corticolous and forms round, lobate, large thalli with abundant and large apothecia.

Hypogymnia pulverata (Nyl. ex Crombie) Elix

Similar to *H. lugubris* var. *sublugubris*, but with blue greyish, laminal soralia. We found it intermixed with *H. lugubris* var. *sublugubris* and *Menegazzia vesiculosa* on young trunks of *Nothofagus*.

6, on *Nothofagus* sp., hb. Etayo 22671. 38, on *N. pumilio*, hb. Etayo 22997.

Hypotrichyna brevirhiza (Kurok.) Hale

This corticolous species with grey thallus with soralia and medullae K+ red is a pantropical species that occurs in southern Argentina and Chile (Elvebakk et al. 2014; Hale, 1975). Recorded by Santesson in Naturhistoriska riksmuseet (2021) from Navarino.

28, branches of *Nothofagus*, hb. Etayo 22802.

Hypotrichyna sinuosa (Sm.) Hale

It appears to be a common species in southern South America (Elvebakk et al. 2014). Some specimens fit well with *H. flavovirens* (Kurok.) Hale but Elvebakk et al. (2014) reduced it to a synonym of *H. sinuosa*.

We found it with *Hypogymnia lugubris* var. *sublugubris*, *Nephromopsis chlorophylla* and *Menegazzia globulifera*. It has been recorded by Santesson in Naturhistoriska riksmuseet (2021) and Quilhot et al. (2012) from Navarino.

2, on *N. antarctica*, hb. Etayo 22143. 5, on *N. pumilio*, J. Etayo 22634 (UMAG). 28, on *Berberis microphylla*, hb. Etayo 22811. 42, old and dusty *N. pumilio* near the track, hb. Etayo 24674.

Hypotrichyna sorocheila (Vain.) Divakar, A. Crespo, Sipman, Elix & Lumbsch

Cetrariastrum sorocheilum (Vain.) Culb. & Culb.

We found it on rocks. Recorded by Etayo and Sancho (2008).

5, boulder, J. Etayo 22677 (UMAG). 14, on humus and bryophytes on subvertical wall, hb. Etayo 22199. 29, forming large thalli on a boulder, hb. Etayo 22896.

Hypotrichyna swinscowii (Hale) Krog & Swinscow

Records in Southern South America appear in Elvebakk et al. (2014). It appears in the Santesson’s records in Fryday (2020) from Navarino.

Japewia tornoensis (Nyl.) Tønsberg

Characteristics of this species are its convex ascomata, without exciple, similar to *Arthonia*, reddish brown to black, a colorless to almost red hypothecium, branched-anastomosed paraphyses covered by a gel, asci of *Lecanora*-type and ascospores with a thick wall, c. 2 μm, 14–21 x 9–13 μm. Forming small thalli intermixed with *Lecanora epibryon, Parmelia saxatilis*, bryophytes and small herbs. We found it on thin twigs in alpine tundra as well.

It is a circumpolar species in the Northern Hemisphere, but also known from South to Central America, Subantarctic islands and Antarctica (Tønsberg, 1990; Tønsberg in Smith et al. 2009).

Karschia sp.

At least in one locality we found a *Karschia* with epithecium and external exciple tinged dark blue, K-, asci 55–65 x 26–30 μm and ascospores initially hyaline, then brown, 20.5–23 μm. It seems to be a record of *Karschia* s.l. (as defined by Lumbsch et al. 2013).
9–12 µm. In other localities we found other similar samples with very similar ascospores, but brown pigment in exciple and epitheium, more typical for several species of *Karschia*. We have not studied in detail the two morphs.

Lecanactis fraudans (Räsänen) Tehler

Lecanactis fraudans was known from the type locality in Tierra del Fuego, Fuegia media, Rio Bueno, on bark of *N. pumilio*. We found it abundantly on wood and bark of the same tree in Navarino. Some features of this species are: ascomata flat with prominent margin and white pruina, 0.5–11 mm diam. Ascospores (0–)2–3-septate, with one end broader than the opposite, 26–33 x 4.5–6 µm. Some of the collected thalli are sorediate, with grey colored, grouped soralia, intermixed with scarce apothecia similar to the non-sorediate specimens. Ascospores in Navarino samples are very similar to those recorded by Tehler (1992). Egea and Torrente (1994) distinguished the New Zealand species *L. exigua* Egea & Torrente based on larger ascomata and slightly thinner spores. Recorded by Etayo and Sancho (2008).

Lecanora confusa Almb.

We found this species on thin twigs of *Berberis* and *Nothofagus* in places near the shore with species like *Arthonia radiata* and cf. *Athallia holocarpa*.

28, on twigs of *Berberis microphylla*, hb. Etayo 22815. 43 on twigs of *Berberis* and *Nothofagus*, hb. Etayo 24532.

Lecanora epibryon (Ach.) Ach.

Lumbsch (1994) recorded two subspecies that differentiates only in the presence of stictic acid, ssp. *broccha* (Nyl.) Lumbsch and without it, ssp. *xanthophora* Lumbsch. Both taxa are morphologically almost identical and have similar distribution. From Navarino Redón and Quilhot (1977) recorded *L. parmelina* Zahlbr., that according Lumbsch (1994) is a synonym of the ssp. *broccha*. At one occasion we found a sorediate thallus with well-delimited soralia even in the margin of apothecia that could fit well with *Lecanora novaeguineae* Lumbsch (Lumbsch, 1994), a species only known from Papua–New Guinea.

It has been recorded on alpine soil together with species like *Cladonia rangiferina*, *Pseudocyphellaria freycinetii* and *Thamnolia vermicularis*, and it can even grow over them (Etayo & Sancho, 2008).

Lecanora expallens Ach.

Apparently very common on branches and trunks of *Nothofagus*, sometimes occupying large surfaces, rarely with apothecia (22790). It has been recorded from the Falkland Islands recently (Fryday et al. 2019; Orange, 2016).

5, on branches of *Nothofagus*, hb. Etayo 22625. 6, on old bark of *Nothofagus*, hb. Etayo 22650, 22649 (MAF). 15, with apothecia on wood of *N. pumilio*, hb. Etayo 22493. 28, on *Nothofagus* sp. hb. Etayo 22790 (UMAG). 39, on trunk of *Nothofagus* sp., J. Etayo 23020 (hb. Etayo, MAF). 42,

Lecanora flotoviana Spreng.

L. “flotoviana” Spreng.

Forming small and dispersed thalli between species like *Astroplaca ambitiosa* and *Gondwania sublobulata* on seashore rocks. This species is known from the Northern Hemisphere on wood and plant remains but has larger apothecia, to 3.3 mm diam. (Laundon, 2003) and dark brown disc without pruina. Curiously, the lectotype of *L. flotoviana* is lichenicolous on *Phaeophyscia sciastra* (Śliwa, 2007). One of our specimens grew on the thallus margin of *Peltigera collina*, and had peltate and sinuose, slightly pruinose apothecia, 0.8–11 mm diam., similar to *L. zosterae* (Ach.) Nyl.

A cosmopolitan species relatively common in Antarctica but easily mistaken for other small *Lecanora* like *L. dispersa* and *L. albescens* (Søchting et al. 2004). In Etayo and Sancho (2008) two species from the *Lecanora dispersa* group and *L. cf. semipallida* are recorded from Navarino and can belong here.

5, seashore rocks, J. Etayo 22635 (MAF). 14, on seashore rocks, hb. Etayo 22205. 12, on seashore rocks, hb. Etayo 22532. 29, on seashore rocks, J. Etayo 22872 (UMAG); *ibidem*, on *Peltigera collina* on seashore rock, hb. Etayo 22880; *ibidem*, seashore rock exposed W, U. Søchting 10361 (C). 44, on seashore rocks, J. Etayo 24522 (UMAG).

Lecanora fuegiensis (Räsänen) Guderley

Lecanora impudens Degel.

A sorediate, corticolous species with small apothecia of pink colored disk and white pruina.

Lecanora intricata (Ach.) Ach.

24, on boulder together with *Tephromela atra*, J. Etayo 22838 (UMAG).

Lecanora physciella (Darb.) Hertel

Considered as an Antarctic endemic (Søchting et al. 2004), now found in Navarino.

Lecanora polytropa (Hoffm.) Rabenh.

We found small thalli, sometimes almost reduced to apothecia between other lichens like *Rhizocarpon geographicum* and *R. polycarpon*. It is a bipolar-alpine species recorded from Antarctica as well (Søchting et al. 2004).
2, pebbles on the soil, hb. Etayo 24656. 4, siliceous pebbles on the soil, hb. Etayo 22430. 12, on seashore rocks, hb. Etayo 22531. 21, on a boulder, J. Etayo 22752 (UMAG). MAF 15916 (UMAG).

Lecanora rupicola (L.) Zahlbr.
On seashore rocks, we found it parasitized by *Rimularia insularis*. It is similar to var. *bicincta* by its dark colored ascomata with a clear margin.
12, on seashore rock, hb. Etayo 22533; *ibidem*, J. Etayo 22541 (UMAG).

Lecanora symmicta (Ach.) Ach.
43, on thin twigs of *N. betuloides*, hb. Etayo 24532.

Lecidea atrobrunnea (Ram. ex Lam. et DC.) Schaerer
Øvstedal and Lewis Smith (2001) pointed out its variability in Antarctica, specially concerning hypothecium pigmentation. Our samples have a dark brown hypothecium and sometimes have dispersed areolas surrounded by a thick black hypothallus. Other Antarctic records appear in Vainio (1903) and Hertel (1984).
4, on schists, hb. Etayo 22425. 21, on rock, J. Etayo 22752 (UMAG); *ibidem* hb. Etayo 22753. 16, on rock, J. Etayo 15855 (MAF).

"**Lecidea**" globulispora Nyl.
Lecidea antiloga Stirt.
Thallus immersed, hardly visible, forming a film over acrocarpous bryophytes. Apothecia (120–)200–300(–400) μm diam., weakly convex, black; margin persistent, concolorous with disc, colorless, brownish in surface. Hymenium colorless, 40–50 μm tall, I+ blue. Epiphyemenium dark green, K+ intense green, N+ reddish brown. Hypothecium colorless. Paraphyses branched and anastomosed especially at the base c. 2 μm thick, with dark brown caps to 3–4 μm, surrounded by a dark green gel. Asci clavate, 8-spored, biseriate, *Bilimbia*-type, 36–40 x 10–14 μm. Ascospores colorless, simple, subglobose, with a large central oil drop, with a thin wall, 5.5–7 μm diam.

Several species of *Lecanora* and *Lecidea* with globose to subglobose ascospores have been described. The corticolous or lignicolous *Lecidea globulispora* has a fundamentally northern distribution (described as *Lecidea antiloga* from there) but also a scattered distribution in southern South America being particularly frequent on the nearby Falkland Islands. Alstrup (1993) described *Lecanora polysphaeridia* Alstrup on dead twigs and leaves of *Cassiope* in Greenland, but this species has polysporous asci, 24–32 per ascus. *Lecanora muscigena* Øvstedal & Fryday (Øvstedal *et al.* 2020) growing on terricolous bryophytes, has also globose ascospores, (6–)7.35±0.813(–9) μm diam. but it has creamy-white, efigurate squamules with a black hypothallus. Other similar corticolous species are: *Lecanora fusescens* (Sommerf.) Nyl. with larger and more ellipsoidal ascospores, c. 8–9 × 5–6 μm, or the corticolous or lignicolous *L. boligera* (Th. Fr.) Hedl., *L. nylanderi* P. Crouan & H. Crouan or *L. paddensis* (Tuck.) T. Sprib., commented in Øvstedal *et al.* (2020).

This species seems to be always associated with thalli of *Endocena informis* and *Ochrolechia frigida* and near whitish decolorated bryophytes.

4, on bryophytes growing intermixed in *Bolax*, hb. Etayo 22436, 22437, 22440.
Lecidea promiscens Nyl.
Bipolar species known in the south from Australia, Argentina and Chile (Hertel, 1997). Recorded in Navarino by Etayo and Sancho (2008).

Lecidea santessonii Hertel
Navarino samples have dispersed squamules and are surrounded by a fimbriate, black hypothallus; they differ from *L. atrobrunnea* by their I- medulla. According to Hertel (1997), it was known from Cabo de Hornos.
2, pebbles on the ground, hb. Etayo 24659, 24666.

Lecidea turgidula Fr.
Growing on wood of *Nothofagus*, we found samples without (endophloeodic) and with a whitish thallus.
15, on wood of *N. pumilio*, hb. Etayo 22493. 36, on wood of *Nothofagus* near the track, J. Etayo 22931 (UMAG).

Lecidella carpathica Körb.
We found it with *Porina chlorotica* on seashore rocks. Recorded from the Falkland Islands by Fryday et al. (2019).
5, on seashore rocks, hb. Etayo 22616.

Lecidella elaeochroma (Ach.) M. Choisy
Recorded from the Falkland Islands by Fryday et al. (2019) but seems to be rare in Navarino.
37, on a big fallen trunk on beach, hb. Etayo 22986.

Lecidella patavina (A. Massal.) Knoph & Leuckert
We found only one sample with very convex apothecia with yellow pruina and large pycnidia on the thallus.
14, on seashore rocks, upper part, hb. Etayo 22210.

Lecidella stigmatea (Ach.) Hertel & Leuckert
Recorded by Ruprecht et al. (2020), probably from Cerro Bandera (Navarino) but without exact location.
28, on seashore rocks with *Pertusaria monogona*, hb. Etayo 22803.

Lecidella wulfenii (Hepp) Körb.
Forming small cushions between other lichens. Bipolar species also known from Antarctica (Øvstedal & Lewis Smith, 2001) and the Falkland Islands (Fryday et al. 2019).
29, on *Cetrariastrum sorocheilum* on rock, hb. Etayo 22896. 33, on *Bolax*, U. Søchting 10393 (C).

Lecidoma demissum (Rustr.) Gotth. Schneid. & Hertel
Bipolar and widely collected in the Northern and Southern Hemispheres, it is known from Antarctica and the South Orkney Islands (Øvstedal & Lewis Smith, 2001). We found it on rotting plants in alpine peat bogs together with *Lopadium pezizoideum* and *Lepraria* sp.
33, on rotting plants, hb. Etayo 22922.
Lepra amara (Ach.) Hafellner

Pertusaria amara (Ach.) Nyl.

With a similar morphology as European morphs, except that some samples have very large soralia (to 1 cm diam.) it was not recorded by Messuti and Vobis (2002) from Tierra del Fuego. Recorded as *Pertusaria amara* by Etayo and Sancho (2008).

5, on seashore rocks, hb. Etayo 22614. 6, on seashore rocks, hb. Etayo 22664. 26, on *Nothofagus pumilio*, hb. Etayo 22942. 34, on old bark of *N. pumilio*, hb. Etayo 23061. 41, on seashore rocks, J. Etayo 23222 (MAF).

Lepra monogona (Nyl.) Hafellner

Pertusaria monogona Nyl.

Characteristics are its K+ red thallus, disciform apothecia similar to soralia, asci 1-spored and ascospores large (140–180 x 60–85 μm) in our sample.

28, on seashore rocks, hb. Etayo 22803.

Lepraria caesioalba (B. de Lesd.) J.R. Laundon

Recorded from the Falkland Islands by Fryday *et al.* (2019).

16, on soil in a peat bog, hb. Etayo 22515. 13, on a vertical wall together with *Cystocoleus ebeneus*, hb. Etayo 22196. 21, on acidic soil, hb. Etayo 22746. 33, on acid alpine soil, hb. Etayo 22925. 38, on humus on rock, J. Etayo 23011 (UMAG). 37, (*L. cf. caesioalba*) on maritime rocks, J. Etayo 22991 (MAF).

Lepraria vouauxii (Hue) R.C. Harris

21, on humus on rocks, hb. Etayo 22754.

Lepraria membranacea (Dicks.) Vainio

Leproloma membranaceum (Dicks.) Vainio

41, on bryophytes on seashore rocks, hb. Etayo 23219.

Leptogium decipiens P. M. Jørg.

This species grows amongst other saxicolous lichens and has a thallus of small lobules covered by many small coralloid isidia.

Leptogium mandonii P. M. Jørg.

This is the isidiate counterpart of *L. andinum*, and its features are a lower part covered by long, white hairs of cylindrical cells and subglabose to cylindrical isidia, generally grouped on upper part of the thallus. Jørgensen (1975) studied many samples from Southern Chile (Punta Arenas, Torres del Paine, Puerto Natales and Canal Beagle).

3, on *Bolax*, J. Etayo 22294 (UMAG). 5, on humus on rocks, hb. Etayo 22633. 14, on humus on shaded wall, hb. Etayo 22202. 38, on soil in a slope, hb. Etayo 23009.

Leptogium menziesii (Ach.) Mont.

Characterized by its smooth thallus with laminal or marginal phyllidia and with long, white hairs below. Furthermore, it forms apothecia with smooth margins and grows on terricolous or epiphytic bryophytes. Recorded from Navarino by Santesson in Fryday (2020), Redón and Quilhot (1977), Etayo and Sancho (2008) and Quilhot *et al.* (2012). (Fig. 23).
Leptogium puberulum Hue

According to Jørgensen (2001), this species is similar to *L. menziesii* but smaller, with smaller lobules that are more incised, and with smaller ascospores. Our samples were sterile.

23, on siliceous boulder, hb. Etayo 22761 (UMAG); ibidem, on base of rock, U. Søchting 10270 (C, det. Jørg.).

Lichenomphalia *cf.* umbellifera (L.) Redhead, Lutzoni, Moncalvo & Vilgalys

We found only sterile small granules *Botrydina*-type growing directly on soil.

4, on alpine soil, J. Etayo 22433 (MAF).

Lopadium pezizoideum (Ach.) Körber

This seems to be the first austral record of this species considered living only in the Northern Hemisphere. We found it on rotten plants together with *Lecidoma demissum* and *Lepraria* sp.

33, on rotten plants, hb. Etayo 22995.

Massalongia patagonica Kitaura & Lorenz

Massalongia carnosa (Dicks.) Körb. was said to be a bipolar species that reaches Antarctica (Søchting et al. 2004) and was recently recorded from the Falkland Islands by Fryday et al. (2019). Jørgensen et al. (2019), however, stated that all Southern Hemisphere records of *M. carnosa* are really *M. patagonica*. It was known from Argentina, Chile and Malvinas Islands in South America.

1, on soil, MAF 15993. 13, on a vertical wall with *Cystocoleus ebeneus*, hb. Etayo 22180 (MAF). 15, on soil, J. Etayo 22995.

Fig. 23. *Peltigera collina* is a common species of *Peltigera* and in a different way it prefers *Nothofagus* trunks.

In the photography living with *Leptogium menziesii*. 2, on mossy soil, hb. Etayo 22180 (MAF). 15, on soil, J. Etayo 22472 (MAF).

27, on a boulder, U. Søchting 10331 (C).

34, on mossy base of *Nothofagus*, hb. Etayo 23037; ibidem, J. Etayo 23050 (MAF).

38, on humus in the forest, hb. Etayo 22995.
Mastodia tessellata (Hook. f. & Harv.) Hook. f. & Harv.

Turgidosculum complicatum (Nyl.) J. Kohlm. & E. Kohlm., Kohlmeyera complicatula (Nyl.) S. Schatz

Recorded from Navarino by Garrido-Benavent et al. (2016, 2018) at the north east coast. This is the only known case of an ascomycete involving a foliose, green algae.

Megalaria grossa (Pers. ex Nyl.) Hafellner

Catillaria grossa (Pers.) Körb.

Interestingly, this unmistakable epiphytic species (in the Northern Hemisphere) appears in Navarino on Bolax cushions or on bryophytes. Galloway (2007) reported it from New Zealand, mainly on bark of trees and shrubs but also on dead tussock bases. Recorded from the Falkland Islands by Fryday et al. (2019).

Megalaria phaeolomiza (I.M. Lamb) Fryday & Lendemer

With granulose thallus, sometimes hairy (in microscope with erect hyphae) and similar to Agonimia. Apothecia brown, crenulate; exciple cortex blue, gelatinized and composed of wide cells, 3–8 μm diam. Hypothecium reddish brown; paraphyses apices composed of moniliform cells and ascospores 17–19 x 8–13 μm with a thick wall, 1–1.5 μm.

Megasporea verrucosa (Ach.) Hafellner & V. Wirth

A rather uncommon species on Navarino mountains. More or less cosmopolitan, in South America it has been cited from Venezuela (Purvis et al. 1992), Argentina (Messuti & Vobis, 2002) and Chile (Galloway & Quilhot, 1998) at least. It reaches the Antarctic (Søchting et al. 2004).

Melanohalea elegantula (Zahlbr.) O. Blanco, A. Crespo, Divakar, Essl., D. Hawksw. & Lumbsch

Melanelia elegantula (Zahlbr.) Essl.

A fairly common species in Navarino, especially on young tree bark. With a rough surface and scattered isidia, sometimes with apothecia in the central area. A mild temperate species, collected in Antarctica on wood (Øvstedal & Lewis Smith, 2001). Recorded from the Falkland Islands by Fryday et al. (2019) and by Etayo and Sancho (2008) from Navarino.

Melanohalea ushuaiensis (Zahlbr.) O. Blanco, A. Crespo, Divakar, Essl., D. Hawksw. & Lumbsch

Melanelia ushuaiensis (Zahlbr.) Essl.
Common in Southern South America (Elvebakk et al. 2014; Esslinger, 1977). It has been recorded by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977), Etayo and Sancho (2008) and Quilhot et al. (2012) from Navarino.

Menegazzia cincinnata (Ach.) Bitter

Yellow thallus, without soralia and with abundant thick and crenulate protruding ridges. Normally asci with 8 ascospores, that are hyaline and 24–30 x 12–17 μm. One of the samples (hb. Etayo 22947) has 4-spored asci, thallus with only a few holes and abundant pycnidia with pinkish to black ostiole and bacilliform conidia, 4–5 x 0.5 μm.

Recorded by Etayo and Sancho (2008) and Quilhot et al. (2012) from Navarino. Santesson (1942) recorded it from the entire Patagonian region, but not from Navarino.

11, on *N. pumilio*, hb. Etayo 22459. 19, on *N. pumilio*, hb. Etayo 22569.

26, on *N. pumilio*, hb. Etayo 22947.

Menegazzia globulifera R. Sant.

This species is characterised by its yellowish colour, usually sterile thallus and vesiculous soralia. Recorded as *M. cf. globulifera* already by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977), Bjerke and Elvebakk (2001), Trest et al. (2015), Etayo and Sancho (2008) and Quilhot et al. (2012) from Navarino.

5, on *N. pumilio*, J. Etayo 22634 (UMAG). 6, on *Nothofagus* sp. Etayo 22670. 28, on *Nothofagus* sp. Etayo 22783. 36, on young *Nothofagus* on the edge of the slope, hb. Etayo 22929 (MAF, UMAG).

Menegazzia magellanica R. Sant.

Menegazzia neozelandica (Zahlbr.) P. James

Characteristic by soralia formed around thallus holes. Bjerke and Elvebakk (2001) recorded along Chile but not in the most meridional places.

28, on *Nothofagus* sp., hb. Etayo 22780.

Menegazzia sanguinescens (Räsänen) R. Sant.

This is the largest *Menegazzia* in Navarino, it has wide, grey and long lobes that run parallel; the soralia are laminar and capitate. The medulla is UV+ blue-white and K+ yellow. Santesson in Fryday (2020) recorded it from Hoste and Redón and Quilhot (1977), Bjerke and Elvebakk (2001) and Quilhot et al. (2012) from Navarino.

11, on *Nothofagus pumilio*, hb. Etayo 22458. 26, on *N. pumilio*, J. Etayo 22945 (MAF).
Menegazzia tenuis R. Sant.
Recorded by Santesson in Fryday (2020) from Navarino and Hoste.
34, on *N. pumilio*, hb. Etayo 23054.

Menegazzia violascens (Räsänen) Bjerke
Recorded by Quilhot *et al.* (2012) from Navarino.

Micarea cf. alabastrites (Nyl.) Coppins
Both its external appearance, white subglobose ascomata, and internal, excipulum composed of radial hyphae that are well visible with K, regularly branched paraphyses and triseptate ascospores, 10–16(–19) x 2–3 μm remind this species.

Directly on the bark of young *Nothofagus*, next to *Lecanora* sp., *Ochrolechia pallescens*, *Megalaria phaeolomiza*, but also on old bark next to *Coliciaceae* like *Calicium adspersum* or *C. glaucellum*.
34, on old bark of *N. pumilio*, hb. Etayo 23057. 36, young *Nothofagus* on the edge of the slope, hb. Etayo 22928.

Micarea denigrata (Fr.) Hedl.
Characterised by its endoxylic or granular thallus, black, initially convex ascomata, with olive green epihymenium, K+ purple, abundantly branched paraphyses, 0.8–1.2 μm thick and (0–)1-septate ascospores. See differences to *M. misella* in Coppins (1983). According to this author it is restricted to the Northern Hemisphere.
12, in *Nothofagus* wood, hb. Etayo 22546.

Micarea incrassata Hedl.
Characterised by its granular thallus with intermixed brown cephalodia and black, convex apothecia, with a blue-green epihymenium and a thick reddish-brown hypothecium, K-.
The ascospores, 9–12 x 3.5–4 μm, are simple or uniseptate.
We find it growing at sea level next to *Catapyrenium squamulosum.* Known from European and North American Arctic-alpine regions, as well as from the Kerguelen Islands and Antarctica (Søchting *et al.* 2004), being the only Arctic-alpine *Micarea* of bipolar distribution (Coppins, 1983).
Recorded from the Falkland Islands by Fryday *et al.* (2019).
14, on soil, hb. Etayo 22217.

Micarea lignaria var. lignaria (Ach.) Hedl.
Recorded from the Falkland Islands by Fryday *et al.* (2019).
36, on wood, MAF 16088 (UMAG).

Micarea lignaria var. endoleuca (Leighton) Coppins
This variety is characterised by its thallus, which is C+ orange due to the presence of xanthones. Our specimens have apothecia of light blue or blue-grey colour and completely hyaline hypothecium.
2, *Nothofagus* wood, hb. Etayo 24635. 42, old *N. pumilio* roadside, with dust supply, J. Etayo 24677 (UMAG).

Micarea magellanica (Müll. Arg.) Fryday
M. austroternaria Coppins & Kantvilas
M. magellanica is characterised by its well-developed, brownish-grey thallus, with convex ascomata and without a thallus margin, grouped together to form shapeless or tuberculate black masses, greenish epithecium, greenish-grey hypothecium and excipulum with a brown margin. Ascus of *Micarea*-type and ascospores 0–3-septate, of 10.5–16 x 4–5 μm in our specimens.

Austral species known from Chile (Chiloé P.N.), Tasmania (Coppins & Kantvilas, 1990) and New Zealand (Galloway, 2007). Its typical habitat is terrestrial in boggy soils in cold regions of the Southern Hemisphere. Coppins and Kantvilas (1990) discuss its affinity with *M. ternaria* from the Northern Hemisphere and the possibility that both are conspecific. Recorded by Etayo and Sancho (2008).

16, tundra soil, hb. Etayo 22522, 22523.

Micarea melaena (Nyl.) Hedl.

Our specimen is similar to *M. lignaria* but has ascospores with 1(-3) septa, 13–18 x 5–6 μm. Black, shiny, convex to hemispherical apothecia. Blue-green epihymenium and hymenium, K+ green, C-; black-green hypothecium, K+ green. *Micarea ternaria* (Nyl.) Vězda, differs in a less pigmented hypothecium. Recorded from the Falkland Islands by Fryday *et al.* (2019).

24, on bryophytes, hb. Etayo 22839.

According to Coppins (1983) this species, common in Europe and present in North America, is also known from New Zealand, therefore it was not unlikely to be found in South America. Relatively common among *Xylographa parallela* thalli on fallen wood.

2, fallen wood, hb. Etayo 24646. 8, trunk of *N. pumilio*, hb. Etayo 24691.

Micarea prasinella (Jutta) I.M. Lamb

Granular thallus, green, with micareoid photobiont, slightly pedicellated apothecia, black, gelatinous hymenium, ascus of *Catinaria*-type and ascospores 1-septate.

This species was known from Alaska, Scotland, Oregon, Chile, New Zealand and Tasmania (Smith *et al.* 2009).

2, decomposing fallen wood, hb. Etayo 24638 (MSC0086669).

Micarea synotheoides (Nyl.) Coppins

Our sample is very similar to the Pyrenean specimens, but it has the epihymenium and a large part of the hymenium of a darker colour, brown-black, K+ violet. Primarily European in distribution and oceanic in nature, it also appears in Macaronesia and Japan (Coppins, 1983), where the type locality is located. New to Chile and Southern South America.

10, on bark of *N. betuloides*, hb. Etayo 22237.

Microcalicium conversum Tibell

Characterised by its short stipitate apothecia, dark green coloured mazaedium and cylindrical ascospores, coarsely ornamented with helicoidal striations. The holotype comes from Magallanes (Rubens River, 50 km SE of Puerto Natales). We found it growing together with *Chrysothryx candelaris* and various *Caliciaceae* on the bark of inclined trunks of *N. pumilio*.

Known from cold areas of Australia, New Zealand and Southern South America (Tibell, 1987).

1, *N. pumilio*, UMAG 22135.
Mycobilimbia tetramera (De Not.) Vitik., Ahti, Kuusinen, Lommi & T. Ulvinen
Recorded by Etayo and Sancho (2008) from Navarino, but seems not to have been recorded before.
4, on terricolous bryophytes, hb. Etayo 22426. 38, mossy soil, hb. Etayo 23014.
39, on dead Bolax together with Lecanora epibryon, J. Etayo 23027 (UMAG).

Mycoblastus campbellianus (Nyl.) Zahlbr.
From whitish to blue-grey thallus with light-blue soralia and farinaceous soredia, UV+ white, P+ orange-red, with virensic and perlatic acids (Fryday et al. 2019). A southern species previously reported from New Zealand, Tasmania, Campbell and Macquarie Islands, Australia, Tierra del Fuego and Southern Chile by Kantvilas (2009). Recently recorded from the Falkland Islands by Fryday et al. (2019).
26, on N. pumilio, hb. Etayo 22968.

Mycoblastus coniophorus (Elix & A.W. Archer) Kantvilas & Elix
This normally epiphytic species is currently known from southern Chile and Juan Fernández Island in South America but also in Auckland Island, Macquarie Island, Tasmania and south-eastern Australia (Kantvilas, 2009).

Mycocalicium subtile (Pers.) Szatala
Very abundant on a white thallus with Trentepohlia that grows on dry and protected bark of N. pumilio.
8, on protected bark of Nothofagus sp., MAF 15772, J. Etayo 22709 (UMAG).

Myriolecis hagenii (Ach.) Śliwa, Zhao Xin & Lumbsch
According to Fröberg (1997) L. hagenii is separated from L. dispersa by its smaller ascomata, darker disk, thin margin and absence of lichen substances. We found one sample of this species growing on Nothofagus.
29, on thick Nothofagus, hb. Etayo 22861 (MAF, UMAG).

Myriolecis aff. semipallida (H. Magn.) Śliwa, Zhao Xin & Lumbsch
Recorded by Etayo and Sancho (2008) from Navarino.

Nephroma antarcticum (Wulfen) Nyl.
An extraordinarily common species in Navarino on rocks and, especially, on Nothofagus trunks. It can be said that it is rare to see a trunk without it. As well as carrying numerous species of parasitic fungi (see lichen fungi), many lichens can also grow on it as it is a long lasting and abundant substrate. It is common to see small Usnea or Pseudocyphellaria, but even crustose lichens such as sorediate Teloschistaceae or several lichenized Arthonia or Micarea (Figs. 24 and 25). Recorded by Santesson in Naturhistoriska riksmuseet (2021). Redón and Quilhot (1977), Etayo and Sancho (2008), Quilhot et al. (2012) and Trest et al. (2015) from Navarino.
Fig. 24. Nephroma antarcticum is one of the most visible lichens in Navarino, sometimes thalli arise more than 50 cm in diameter. Photograph by Javier Etayo taken at Cerro Bandera on 9 January 2005.

Fig. 25. The brown colored Nephroma cellulosum is much more uncommon than the yellow-colored N. antarcticum. Photograph by Javier Etayo taken at Caleta Wulaia on 23 January 2005.

Nephroma antarcticum var. lobuligerum Müll. Arg.

Some saxicolous specimens from coastal rocks have abundant marginal pycnidia. Recorded by Etayo and Sancho (2008).

Nephroma cellulosum var. cellulosum (Ach.) Ach.

We always find it on steep to almost vertical mossy rocks in preferably shady situations. It appears in Santesson’s database from Navarino (Fig. 25).

Known from Australia, New Zealand, Argentina and several locations in Chile, including Puerto Navarino (White & James, 1988). Recorded also by Etayo and Sancho (2008) and Quilhot et al. (2012) from Navarino and Santesson in Fryday (2020) reported it from Hoste and Navarino.

28, on subvertical rock, hb. Etayo 22795. 41, coastal rocks, J. Etayo 23217 (UMAG).

Nephroma cellulosum var. isidioferum J.S. Murray

This variety is distinguished by its sulcate thallus and abundant, normally squamiform phyllidia. The specimen found also has abundant apothecia. According to White and James (1988) it is less common than the var. cellulosum, with which it usually coexists. These authors already mentioned it from Navarino.

27, mossy, vertical and shady rock under the forest, hb. Etayo 22819 (MAF).

Nephroma parile (Ach.) Ach.

This species is recorded and illustrated in Rozzi et al. (2012b) but it could belong to N. cellulosum var. isidioferum. White and James (1988) recorded it as epiphytic from region IX and X in Chile but not from more meridional forests.

Nephroma sp.

With a squamulose, brown, thin thallus; shell-shaped squamules, with brown, sorediate-isidiate border and paraplechtenchymatic cortex, always sterile. According to Jørgensen (pers. comm.) this could be a so far undescribed species of *Nephroma.*

Nephromopsis chlorophylla (Willd.) Divakar, A. Crespo & Lumbsch

Tuckermannopsis chlorophylla (Tuck.) Hale

Some specimens have thick rounded soralia on the surface of the branches (22986). Recorded previously from Navarino by Santesson in Naturhistoriska riksmuseet (2021).

1, N. pumilio (o.c.). 5, on N. pumilio, 22634 (UMAG). 6, N. betuloides, hb. Etayo 22640. 8, on N. pumilio and N. betuloides (o.c.). 12, on soil and N. betuloides, hb. Etayo 22532 (MAF). 28, on Nothofagus sp., J. Etayo 22789 (MAF). 37, on thick trunk fallen on the beach, hb. Etayo 22986. 42, old N. pumilio roadside, on wood, hb. Etayo.
Normandina pulchella (Borrer) Nyl.

Relatively common as an epiphyte on *Nothofagus*, mixed with other lichens, as well as on humus in rocky areas. We did not observe any fertile specimens. Recorded by Etayo and Sancho (2008).

Notoparmelia cunninghamii (Cromb.) A. Crespo, Ferencová & Divakar

Parmelia cunninghamii Cromb.

Notoparmelia protosulcata (Hale) A. Crespo, Ferencová & Divakar

Parmelia protosulcata Hale

Similar to *Parmelia sulcata* but with a K- or yellowish medulla and soralia with a tendency to be apical and orbicular. Common in Southern South America (Elvebakk *et al.* 2014). Recorded by Etayo and Sancho (2008).

2, fallen wood, hb. Etayo 24647. 5, humus on rocks, hb. Etayo 22632. 57, on *N. pumilio*, hb. Etayo 24517.

Ochrolechia androgyna (Hoffm.) Arnold

Quite variable, showing thalli with very different appearance, from thin (similar to *O. arborea*) to verrucose, epiphytic or on mosses. Samples from loc. 8 present completely sorediate thalli of whitish-yellowish color, with small and more yellow spots. Messuti and Lumbsch (2000), reported it from Tierra del Fuego and S. Chile (Puerto Natales) on *N. antarctica* bark only, while from Neuquén it is mentioned on *N. pumilio* and *Araucaria*.

Ochrolechia antarctica (Müll. Arg.) Darb.

Ertz *et al.* (2016) reinstated *O. antarctica* as a differentiated species from *O. parella* and recorded from southern South America, even Falkland Islands and Antarctica while *O. parella* probably does not occur in South Hemisphere.

Redón and Quilhot (1977) recorded this saxicolous *O. antarctica* from Navarino but several citations from southern Argentina and Chile appear in Messuti and Lumbsch (2000) as *O. parella* belong to this species.

Ochrolechia arborea (Kreyer) Almb.

Found on horizontal branches of *N. pumilio* in the interior of the forest. Recorded as cf. by Etayo and Sancho (2008).

11, on *N. pumilio*, hb. Etayo 22451. 26, on *N. pumilio*, hb. Etayo 22968.

Ochrolechia frigida (Sw.) Lynge

O. malmei Räsänen

Easy to recognise by its thallus with diffuse soralia and spinules. Of the two chemotypes known in South America, type II is found, with gyrophoric and variolaric acids (Messuti & Lumbsch, 2000). It is extraordinarily common in the alpine region and on Navarino Island usually produces apothecia. Found on the ground covering plant remains, grasses, twigs of bushes, and even other lichens. On *Pseudocyphellaria freycinetii* it begins by colonising the edges of the thallus (Fig. 26).

A bipolar-alpine species that reaches the Antarctic (Søchting *et al.* 2004). Recorded by Redón and Quilhot (1977) and Etayo and Sancho (2008) from Navarino. Redón and Quilhot (1977) recorded *Ochrolechia* cf. *blandior* (Nyl.) Darb., that may be this species.

Ochrolechia pallescens (L.) A. Massal.

Subcosmopolitan species that in South America has been cited from the south of Argentina.

Fig. 26. *Ochrolechia frigida* (with some apothecia) and *Pseudocyphellaria freycinetii* (right) are common on soil, mosses and plant debris in exposed situations. Photograph by Javier Etayo taken at Cerro Bandera on 9 January 2005.
and Chile, mainly from different species of *Nothofagus*, but also on other substrates such as *Aextoxicon, Baccharis* or *Drimys* (Messuti & Lumbsch, 2000). Recorded by Redón and Quilhot (1977) and Quilhot et al. (2012) from Navarino.

11, on *N. pumilio*, hb. Etayo 22259. 26, on *N. pumilio*, hb. Etayo 22942. 36, young *Nothofagus* on the edge of the slope, hb. Etayo 22928.

Ochrolechia szatalaensis Vers.

Ochrolechia pseudotartarea (Vain.) Vers. was described from Punta Arenas, and collected from *N. antarctica* forests in southern Chile and Argentina. Calvelo (1992) mentions and gives a succinct description of this species, but Messuti and Lumbsch (2000) propose to synonymise it with *O. szatalaensis*. This is a corticolous or, rarely lignicolous species common in the Andean-Patagonian and Subantarctic forests. Some Argentinean and Chilean citations appear in Messuti and Lumbsch (2000).

Pachnolepia pruinata (Tors.) Frisch & G. Thor

Arthonia impolita (Hoffm.) Borrer

Apparently the first austral report of this common species from the Northern Hemisphere. Our specimen is identical to European samples of this species.

42, bark of *N. pumilio*, hb. Etayo 24685.

Pachyphiale fagicola (Hepp) Zwack.

We found a semi-hidden specimen among the squamules of two species of corticolous *Pannariaceae*, which we recognized thanks to the presence of the filamentous fungus *Refractohilum pluriseptatum*, typical of this host. With abundant apothecia; the ascospores are all sharply pointed and have (6–)7(–8) septa, 27–37 x 4–5 μm. In Europe, the spores of *P. fagicola* normally described as having obtuse apices, 3–7 septa and 15–35 x 3.5–5 μm large (Rose & James in Purvis et al. 1992), but according to drawings of European and North American specimens (Vězda & Poelt, 1974) of *P. fagicola*, its spores are mostly acute as in our specimen.

According to Vězda and Poelt (1974) this species was known throughout Europe, Siberia and North America. This is the first South American citation showing that it is a bipolar species. 7, bark of *N. pumilio*, hb. Etayo 22696.

Palicella glaucopa (Hook. f. & Taylor) Rodr. Flakus & Printzen

Thallus greyish, crustose, thin, K+ yellow, with pale to black apothecia, flattened, with a conspicuous margin; excipulum composed of radial hyphae that are less dense in the inner parts, hyaline on the inside but blue-green with indigo shades towards the outside. both pigments K+ blue-green; epihymenium of the same blue-violet colour, K+ bluish green; hyaline paraphyses, strongly branched and anastomosed, *Lecanora* or *Lecidella* type asci; ascospores hyaline, narrowly ellipsoidal, large, (13–)16–19 x (5.5–)6–7 μm.

In Flakus and Printzen (2014) this species appears well characterized. It is known from southern Argentina and Chile, where it seems to be common, judging by the number of citations in that publication and also according to our collections. First citation for Navarino.

Pannaria athroophylla (Stirt.) Elvebakk & D.J. Galloway

Recorded from Navarino by Pineda Cáceres et al. (2020).

Pannoria contorta (Müll. Arg.) Passo & Calvelo

A description of this species appears in Passo and Calvelo (2006). It was collected by Santesson from Navarino in Naturhistoriska riksmuseet (2021) and recorded in Pineda Cáceres et al. (2020).

Pannoria farinosa Elvebakk & J. Fritt-Rasm.

Thallus color quite variable mostly grayish to brownish. One specimen (22631) with isidiate soralia. In the margin of the thallus, the soralia predominate, but in the interior, abundant globular isidia are formed that end up covering the surface. Not uncommon to see it covering other lichens such as *Pseudocyphellaria* (e.g. *P. granulata*).

A very common species in Navarino. Elvebakk et al. (2007) recorded it from Navarino and Isla Hoste and also Santesson in Naturhistoriska riksmuseet (2021). Etayo and Sancho (2008), Redón and Quilhot (1977) and Quilhot et al. (2012) recorded it as *P. leproloma* (Nyl.) P.M. Jørg., a species restricted to New Zealand (Elvebakk et al. 2007).

Pannaria hookeri (Borrer ex Sm.) Nyl.

We found it on rocks and mosses. Bipolar, circumarctic, it is known from the Northern Hemisphere, Southern South America, New Zealand and Antarctica (Øvstedal & Lewis Smith, 2001). Recorded by Etayo and Sancho (2008) from Navarino.

32, over solitary rock, J. Etayo 2323 (MAF).

Pannaria hispidula (Nyl.) Hue

Psoroma hispidulum Nyl.

Frequent on soil or in cracks in rocks together with *Psoroma* species such as *P. cinnamomeum* or *P. hypnorum*. We also found it on old bark at the very base of *Nothofagus pumilio* (Fig. 27). Recorded from Navarino by Etayo and Sancho (2008) and Quilhot et al. (2012).

Pannaria cf. microphyllizans (Nyl.) P.M. Jørg.

Psoroma sphinctrinum var. microphyllizans Nyl.

Forms large, gray-white, voluminous thalli, elevated above the substrate (bark) with abundant isidia and brown to black apothecia with thick margin. According to Jørgensen (pers. comm.) these specimens do not correspond to *P. microphyllizans* s.str., which should be studied in depth (Fig. 28).

Pannaria pallida (Nyl.) Hue

Psoroma pallidum Nyl.

Thallus similar to *P. sphinctrina*, with long lobes, but always whitish or light gray and with pink apothecia due to a thin layer of pruina. Austral species according to Galloway (2007). Recorded from Navarino by Etayo and Sancho (2008) and Quilhot *et al.* (2012) (Fig. 29).

Fig. 28. *Pannaria* aff. *microphyllizans*, with many squamiform isidia covering its surface. Photograph by Javier Etayo taken at Barranca Guarriaco on 14 January 2005.

Fig. 29. *Pannaria pallida* with *Pseudocyphellaria coriifolia* and *N. antarcticum*, three common lichens on trunks of *Nothofagus* in Navarino. Photograph by Javier Etayo taken at Puerto Gabriela on 10 January 2005.
Growing together with *P. farinosa* and *Normandina pulchella* mainly on trunks of *Nothofagus*, but also on rocks near the coast. Recorded from Navarino by Etayo and Sancho (2008).

Pannoparmelia angustata (Pers.) Zahlbr.

Yellowish thallus, with narrow lobes; inferior lobes corticate and covered by fascicles of moniliform hyphae forming a spongiostratum. Ascospores subspherical. Notes about its distribution in southern South America appear in Elvebakk et al. (2014). Previously recorded by Santesson in Naturhistoriska riksmuseet (2021), Etayo and Sancho (2008) and probably by Redón and Quilhot (1977) under *Anzia anzioides* (Fig. 30).

Parmelia saxatilis (L.) Ach.

Very variable, at exposed rocks it can become dark brown. According to Elvebakk et al. (2014) it is common in Southern South America. It appears recorded by Santesson in Fryday (2020), Redón and Quilhot (1977), Etayo and Sancho (2008) and Quilhot et al. (2012) from Navarino.

\textit{Parmelia sulcata} Taylor

According to Elvebakk et al. (2014) it is common in Southern South America. Recorded already by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977), Etayo and Sancho (2008), Quilhot et al. (2012) and Trest et al. (2015) from Navarino.

\textit{Parmeliella concinna} I.M. Lamb

Apparently common in Navarino but probably undercollected. It has round thalli normally grouped together forming larger structures; apothecia with lecideine margin and dark brown to black disk (Fig. 31).

\textit{Parmeliella magellanica} P.M. Jørg.

Described by Jørgensen (2004), consisting of small squamules with soralia growing from the border and apothecia with a hairy margin. Forms small thalli between other lichens. Recorded from Navarino by Etayo and Sancho (2008).

Parmeliopsis hyperopta (Ach.) Vain.

Apparently rare in Navarino; we found only once a trunk with several thalli of it. Elvebakk *et al.* (2014) recorded it several times in Southern South America. Recorded from Chile by Galloway and Quilhot (1998).

15, on old *N. pumilio*, hb. Etayo 22484. 37, branches of a dead *Nothofagus* sp., J. Etayo 23063 (UMAG).

Parmotrema reticulatum (Taylor) M. Choisy

Rimelia reticulata (Taylor) Hale & Fletcher

Recorded by Fryday *et al.* (2019) from the Falkland Islands.

26, rocks, J. Etayo 22951 (UMAG). 28, on branches of *Nothofagus*, hb. Etayo 22802.

Peltigera andensis Vitik.

Shiny, non-hairy thallus, with isidia along margins or on fissures and with the lower surface without discernible veins.

It is an endemic species from the Neotropical Kingdom, distributed mainly in the Andean range (Martínez *et al.* 2003).

1, on earthy slope, hb. Etayo 22141. 28, on rock humus, hb. Etayo 22781.

Peltigera austroamericana Zahlbr.

A species that is known from South America and reaches Central Mexico (Martínez *et al.* 2003).

15, soil, hb. Etayo 22474 (MAF, UMAG).

Peltigera canina (L.) Willd.

2, on ground under forest, hb. Etayo 22166 (MAF). 57, soil and stumps, hb. Etayo 24512, 25513, 24514 (UMAG).

Peltigera collina (Ach.) Schrader

Fundamentally Holarctic but can reach Holantarctic zones like Patagonia and Tierra del Fuego (Martínez *et al.* 2003). Quite common on logs and mossy rocks in near-shore locations. Recorded by Santesson in Naturhistoriska riksmuseet (2021) and Etayo and Sancho (2008) from Navarino (Fig. 32).

40, on mossy rock, hb. Etayo 23237.
Peltigera didactyla (With.) J.R. Laundon
Cosmopolitan species that reaches Antarctica (Søchting et al. 2004). Recorded in Santesson in Fryday (2020) and by Etayo and Sancho (2008) from Navarino.
2, on peaty soil, hb. Etayo 24648. 15, on soil, Etayo 22472 (MAF), hb. Etayo 22476 (MAF, UMAG).

Peltigera aff. extenuata (Nyl. ex Vain) Lojka
One of the samples from Navarino studied by Zúñiga et al. (2015) with molecular tools is close to P. extenuata.

Peltigera aff. frigida R. Sant.
According to Martínez et al. (2003) is restricted to Tristan da Cunha and Tierra del Fuego. One of the samples from Navarino studied by Zúñiga et al. (2015) with molecular tools is close to P. frigida.

Peltigera horizontalis (Huds.) Baumg.
15, on old bark of N. pumilio, Etayo 22486 (UMAG). 19, on soil in N. pumilio forest, Etayo 22574. 29, humus on rocks near the coast, Etayo 22890 (MAF). 34, soil in the forest, Etayo 23051 (UMAG).

Peltigera lepidophora (Nyl.) Bitter
Fundamentally Holarctic but also found in South America (Martínez et al. 2003).
41, soil on coastal terraces, Etayo 23218.
Peltigera neopolydactyla (Gyeln.) Gyeln.

A Holarctic species (Martínez et al. 2003) that we found in Navarino.
36, on soil in *Nothofagus* forest, hb. Etayo 22934 (conf. Burgaz).

Peltigera patagonica Räsänen

This species is recorded from Navarino and illustrated in Rozzi et al. (2012b).

Peltigera polydactylon (Neck.) Hoffm.

Peltigera ponjoensis Gyeln.

A considered Holarctic species (Martínez et al. 2003) recorded from Navarino by Zúñiga et al. (2015) based on molecular studies.
15, on old bark of *N. pumilio* (mixed with *P. horizontalis*), hb. Etayo 22486 (UMAG). 44, on *N. betuloides*, hb. Etayo 24496.

Peltigera pulverulenta (Taylor) Nyl.

Very distinctive because of its thick thallus, brown when wet, white when dry, due to the large amount of short trichomes that cover its surface. Ascomata embedded in cavities on the lobular edges.

A species that is known from South America and reaches Central Mexico (Martínez et al. 2003). Often the only lichen living on or between the fissures between *Bolax* cushions. Recorded by Etayo and Sancho (2008).

Peltigera rufescens (Weiss) Humb.

Almost cosmopolitan species (Martínez et al. 2003). Recorded from Navarino by Etayo and Sancho (2008), Rozzi et al. (2012b) and Zúñiga et al. (2015) based on molecular data.

Peltigera spuriella Vain.

With a slightly hairy surface except at the base of the ascomata. It is endemic from the Neotropics and distributed mainly in the Andean range (Martínez et al. 2003).
2, on the soil, hb. Etayo 22164, 22165 (MAF). 28, on humus, J. Etayo 22804 (UMAG).

Peltigera truculenta De Not.

This species was recorded by Santesson in Naturhistoriska riksmuseet (2021) from Navarino. It appears also recorded in Fryday et al. (2019) from Falkland Islands.

Peltularia fuegiana Henssen & P.M. Jørg.

Thallus habitually saxicolous, but we also found on humus and even on wood, with *Scytonema* hardly lobate, with many pseudoisidia; apothecia with proper margins lacking algae,
convex, brown to black, abundant. Epiphygmenium and exciple black greenish, hypothecium pinkish, and ascospores 1-septate, ellipsoid to ovoid, (9–)12–15 x 4–5 µm (Fig. 33).

Pertusaria kalelae Messuti

Although Messuti and Vobis (2002) note that the ascospores of this taxon are smooth, at least some mature specimens show a reticulated wall in the central part of the spores, similar to *P. pustulata* (see Clauzade & Roux, 1985).

17, on *N. pumilio*, hb. Etayo 22268. 34, on *N. pumilio*, hb. Etayo 23039.

Pertusaria microcarpa Nyl.

Similar to *Coccotrema*, with small crater-like apothecia and one spore per ascus. It is one of the last epiphytic lichens to disappear with increasing altitude, near the edge of the forest. It was recorded by Etayo and Sancho (2008) from Navarino and from the Falkland Islands by Fryday et al. (2019).

Pertusaria pachythallina (Räsänen) Messuti

Sterile, with subglobose dispersed P+ orange isidia with a grey top, not containing algae. On moss and soil or saxicolous. Recorded by Etayo and Sancho (2008) from Navarino and from
the Falkland Islands by Fryday et al. (2019). One muscilous sample with dark isidia and thallus
P- is very similar to *Lepra argentea* Fryday known from the Falkland Islands (Fryday et al. 2019).

2, on bryophytes, hb. Etayo 24643. 16, on peaty soil, hb. Etayo 22528. 18, rock protosol, hb.
Etayo 22555. 22, on protosol in rock, J. Etayo 22771 (UMAG). 25, on humus in rock, J. Etayo 22857

Pertusaria perrimosa Nyl.

With ascomata immersed in poorly delimited thalline verrucae, often flattened and only
slightly protruding from the thallus, which produces norstictic acid. Known from the Falkland
Islands (Fryday et al. 2019; Messuti & Vobis, 2002).

Pertusaria spegazzinii Müll. Arg.

Cited by Messuti and Vobis (2002) and Fryday et al. (2019) from Argentinian Tierra del
Fuego, the Falkland Islands and South Georgia, also cited from Antarctica Øvstedal and Lewis

14, coastal rock, with *Haematomma erythromma*, hb. Etayo 22207.

Pertusaria aff. alpina Hepp ex Ahles.

With thallus yellowish, UV+ orange, and conical, yellowish white ascomata, 4–8–spored asci
and ascospores 45–50 x 20–24 µm it is very similar to *P. alpina* but we found it growing always
on wood. None of the species of *Pertusaria* keyed out in Fryday (2019a) fits well with this species.

2, on wood, hb. Etayo 24641. 11, on wood of *N. pumilio*, hb. Etayo 22461 (MAF). 7, on wood

Phaeophyscia endococcina (Körb.) Moberg

A cool-temperate to circumboreal-montane species that reaches the Antarctic (Øvstedal
& Lewis Smith, 2001). Our specimen accords well with the one mentioned for Antarctica by these
authors, but it lacks skyrin and has larger apothecia and smaller ascospores. Elvebakk and Moberg
(2002) cited it from Torres del Paine (Chile).

5, on schists near the sea, hb. Etayo 22628. 12, on schists near the sea, hb. Etayo 22543.

Phaeophyscia orbicularis (Neck.) Moberg

This species is not mentioned in Elvebakk and Moberg (2002) from Southern South America.

5, quite rare on thin exposed twigs, hb. Etayo 22623.

Phaeophyscia sciastra (Ach.) Moberg

With isidiate soralia. Cited by Elvebakk and Moberg (2002) from several Chilean locations
(Morro Chico and Paine) and by Etayo and Sancho (2008) from Navarino.

29, on subvertical coastal rocks, together with *Dermatocarpon miniatum*, hb. Etayo 22871.

Physcia adscendens (Fr.) Oliv.

Elvebakk and Moberg (2002) cited it from southern South America as epiphytic, especially
on *Nothofagus antarctica*. We found it on coastal rounded boulders together with *Polycauliona

5, on thin twigs, hb. Etayo 22623, 23490. 12, on rounded coastal rocks, J. Etayo 22530
(UMAG). 28, on *Berberis microphylla*, hb. Etayo 22815.
Physcia caesia (Hoffm.) Fürnr.

Elvebakk and Moberg (2002) gave an overview of its distribution in Southern South America. We found it on coastal rocks together with Ph. adscendens, Polycauliona candelaria and Sarcogyne privigna. Recorded from Navarino by Redón and Quilhot (1977), Etayo and Sancho (2008) and Quilhot et al. (2012).

5, on schists near the sea, hb. Etayo 22628. 12, on coastal rocks, hb. Etayo 22531. 29, rocks in the forest, hb. Etayo 22875.

Physcia dubia (Hoffm.) Lettau

Differs from the previous one by its thin lobes that form small rosettes and by labriform soralia. Found with Xanthoparmelia spp. and Rhizocarpon geminatum on rocks near the coast. Elvebakk and Moberg (2002) cited it as being well distributed in Southern South America and Antarctica, on nitrogen enriched rocks or near water sources.

5, rock at 10 m a.s.l. hb. Etayo 22676.

Physconia muscigena (Ach.) Poelt

Sterile, without apothecia or asexual reproductive structures. Sometimes covering subvertical rocks in coastal cliffs accompanied by Phaeophyscia endococcina. We found it parasitized at least by four species of lichenicous fungi in the locality below (Etayo & Sancho, 2008). Bipolar-alpine, frequent in the Northern Hemisphere and on several Antarctic and Subantarctic islands (Øvstedal & Lewis Smith, 2001) as well as Chilean continental areas (Elvebakk & Moberg, 2002). Recorded from Navarino by Etayo and Sancho (2008) and Quilhot et al. (2012).

37, subvertical wall near the sea, MAF 15921, ibidem, J. Etayo 22989 (UMAG).

Physconia perisidiosa (Erichs.) Moberg

Elvebakk and Moberg (2002) reported it as new for South America and the Southern Hemisphere, from Torres del Paine, Pali-Aike and Isla Navarino. From this island was also recorded by Santesson in Fryday (2020).

5, on bryophytes on coastal rocks, J. Etayo 22619 (UMAG).

Placidium squamulosum (Ach.) O. Breuss

Catapyrenium squamulosum (Ach.) O. Breuss var. squamulosum

Our specimen can be recognized by its adnate squamules, medulla with cells thickened to simulate a paraplethenchyma, hyaline excipulum, small ascospores, 13–16 × 5.5–6 µm and laminar pycnidia with oblong ellipsoidal conidia.

Cosmopolitan and most euricoic taxon of the genus (Breuss, 1993). In the Andean Cordillera known from Ecuador to Chile and Argentina. Recorded from the Falkland Islands by Fryday et al. (2019).

14, on soil on rocks with Micarea incrassata, hb. Etayo 22217.

Placopsis bicolor (Tuck.) de Lesd.

23, siliceous rocks, J. Etayo 22759 (UMAG); ibidem, hb. Etayo 22760. 24, siliceous rocks, J. Etayo 22834 (MAF). 24, siliceous rocks MAF 15861 (UMAG).
Placopsis perrugosa (Nyl.) Nyl.

Recorded by Etayo and Sancho (2008) as *P. contortuplicata* I.M. Lamb. Sequences of the considered *P. contortuplicata* from Isla Navarino have shown this species is probably not present here. By its brown, verrucose surface of lobules it must belong to *P. perrugosa*.

5, on coastal schists, hb. Etayo 22615 (MAF).

Placopsis microphylla (I.M. Lamb) D.J. Galloway

No lobulation, with the middle part formed by isidia-like granules ending in a pycnidium and with yellowish excavated soralia.

21, vertical wall, with small Usnea, hb. Etayo 22732 (MAF).

Placynthiella dasaea (Stirton) Tønsberg

Thallus made up of green or brown granules, from 20–30 μm, up to 50 μm in diameter, C+ pink, with abundant apothecia with protruding and thin, in section paraplectenchymatous, margins. Well known in the Holarctic it was also recorded from Bolivia by Flakus and Kukwa (2012).

2, on decomposed wood, with bryophytes on *N. pumilio*, hb. Etayo 22483.

Placynthiella uliginosa (Schrad.) Coppins & P. James

Thallus C-, soon convex apothecia and ascospores 15–16 x 6.5–7.5 μm, fit with the features of this species. Found growing on the thallus of *Notoparmelia cunninghamii*.

28, Nothofagus, J. Etayo 22775 (UMAG), ibidem, on *N. pumilio*, J. Etayo 22651 (MAF).

Platismatia glauca (L.) W.I. Culb. & C.F. Culb.

Thalli can reach large sizes, often with well-developed coralloid isidia on the edge of the lobes. A fairly common species in Navarino. Collected by Santesson on Navarino and Hoste Islands (Fryday, 2020) and recorded from Navarino by Redón and Quilhot (1977) and Quilhot et al. (2012) (Fig. 34).

Podostictina berberina (G. Forst.) Moncada & Lücking

Pseudocyphellaria berberina (G. Forst.) D.J. Galloway & P. James

Similar to *P. endochrysa* but hairless on its upper surface. Like that species with a yellow medulla and pseudocyphellae. Known from southern South America, including Magallanes (Galloway, 1986), but not cited from Navarino, where it seems to be quite rare.

36, young Nothofagus, hb. Etayo 22927.

Podostictina endochrysa (Delise) D.J. Galloway & de Lange

Pseudocyphellaria endochrysa (Delise) Vain.

According to Galloway (1986) known from Southern Argentina and Chile, as well as from the Falkland Islands and South Georgia in an altitudinal range of 0–240 m. In Navarino it reaches an altitude of 600 m and is abundant in alpine meadows alongside *Pseudocyphellaria freycinetii*. Recorded from Navarino by Redón and Quilhot (1977), Galloway et al. (1995), Etayo and Sancho (2008) and Quilhot et al. (2012) (Fig. 35).
Fig. 34. *Platismatia glauca* may also form large thalli in Magellanic forests. Photograph by Javier Etayo taken at Caleta Mejillones on 10 January 2005.

Fig. 35. *Podostictina endochrysa* is common in alpine meadows with *Pseudocyphellaria freycinetii* but it can live also on *Nothofagus* trunks or forest soil. Photograph by Javier Etayo taken at Omora Park on 26 January 2005.

Podostictina scabrosa (R. Sant.) D.J. Galloway & de Lange

Pseudocyphellaria scabrosa R. Sant.

Lemon yellow soralia, yellow medulla and pseudocyphellae; the latter are very uncommon. Already known from Navarino (Redón & Quilhot, 1977), and collected by Santesson in on Hoste Island (Fryday, 2020). Recorded from Navarino by Redón and Quilhot (1977), Etayo and Sancho (2008) and Quilhot et al. (2012).

11, on *N. pumilio*, hb. Etayo 22445.

Podostictina vaccina (Mont.) D.J. Galloway & de Lange

Pseudocyphellaria vaccina (Mont.) Malme

Characterized by its yellow medulla (sometimes very pallid to white), green algae and thick, coriaceous lobes with a scabrous-areolate surface, slightly pubescent on the margins.

Known from latitude 40° to Tierra del Fuego and from South Georgia growing on soil in steppes with *Pseudocyphellaria freycinetii* and *Thamnolia vermicularis* (Galloway, 1986). Collected by Santesson on Navarino and Hoste Island (Fryday, 2020) and also reported by Galloway et al. (1995) and Etayo and Sancho (2008).

38, on humus in the forest, hb. Etayo 22994. 34, on soil under old forest of *N. pumilio*, hb. Etayo 23035.

Poeltidea perusta (Nyl.) Hertel & Hafellner

Recorded from the Falkland Islands by Fryday et al. (2019) and probably from Cerro Bandera (Navarino) by Ruprecht et al. (2020) without exact location.

2, on pebbles on the soil, together with *Usnea aurantiaco-atra*, hb. Etayo 24664. 5, coastal rocks hb. Etayo 22614.

Polyblastia gothica Th. Fr.

There may be several different species involved under this name. According to Clauzade and Roux (1985) ascospores are 18–28 x 7–9 μm, while in Purvis et al. (1992) their size is 20–30(–36) x 10–15 μm. The Antarctic specimens studied by Øvstedal and Lewis Smith (2001) have ascospores 20–30 μm in length.

In Navarino, this species forms conspicuous blackish thalli with abundant sessile, pyriform, black, 0.35–0.45 mm broad ascomata, initially with abundant, branched paraphyses, which disappear when they are mature, 8-spored asci and ascospores simple or 1–3 septate (young and colorless), golden or light brown and murales when adult, 32–43 x 11–13 μm (Etayo 22289) or 19–30 x 13–15 μm (Etayo 22902).

Øvstedal and Lewis Smith (2001) and Søchting et al. (2004) cited it for the Antarctic, recognising its bipolar distribution.

Polyblastia terrigena Zschacke

Differs from *P. gothica* in its visible involucrellum and its pale ascospores. 37, on soil, with *Catapyrenium squamulosum*, hb. Etayo 22984 (det. Breuss).

Polycauliona adscendens (S.Y. Kondr.) Frödén, Arup & Søchting

5, on exposed twigs with *P. candelaria*, hb. Etayo 22623, 23488.

Polycauliona candelaria (L.) Frödén, Arup & Søchting

Xanthoria candelaria (L.) Th. Fr.

A cosmopolitan species that reaches the Antarctic (Søchting et al. 2004). Both on coastal rocks, next to *Physcia adscendens*, and on bark of small exposed trunks, next to *Usnea* spp. and *Melanelia ushuaiensis*. Collected by Santesson in 1940 (Fryday, 2020) on Navarino. Recorded from Navarino by Redón & Quilhot (1977), Etayo and Sancho (2008) and Quilhot et al. (2012).

Polycauliona phlogina (Ach.) Arup, Frödén & Søchting

Caloplaca scythica Khodosovtsev & Søchting

Found on a weathered piece of leader in a maritime site in Navarino by M. Z. Søgaard in 2008 (see Vondrák et al. 2010).

Porina chlorotica (Ach.) Mull. Arg.

Pseudosagedia chlorotica (Ach.) Hafellner & Kalb

This species is well known in the Northern Hemisphere. McCarthy (1993) also cites it from the South, from South Africa, Australia, New Zealand and Macquarie Island. First record for Southern South America. We found it on an acidic coastal rock.

5, coastal rocks, hb. Etayo 22616.

Porpidia crustulata (Ach.) Hertel & Knoph

The species is recorded from Navarino by Rozzi et al. (2012b) and is named by Ruprecht et al. (2020) without locality, probably was collected in Cerro Bandera.

Porpidia navarina U. Rupr. & Türk

Described in Ruprecht et al. (2016) as similar to the Arctic *P. flavicunda*. Only been found in Cerro Bandera (Navarino Island) so far.

Porpidia tuberculosa (Sm.) Hertel & Knoph

Thallus whitish, K-, C-, medulla I-; apothecia with hyaline excipulum surrounded by a green border, and citriform ascospores, 12–16.5 x 6.5–7.5 μm.

Samples are heterogeneous and some may belong to other related species. Ruprecht et al. (2020) recorded *P. macrocarpa* in their study, likely from Cerro Bandera (Navarino) but without indication of locality.

2, stone under *N. pumilio*, hb. Etayo 22186. *Ibidem*, rocky ground in the forest. hb. Etayo 24663. 4, siliceous stones on soil, hb. Etayo 22430. 21, on rocks, hb. Etayo 22756. 20, on stone, hb. Etayo 22976.
Protousnea dusenii (Du Rietz) Krog
Scrobiculate surface, with many isidia, whose final ramifications may have whorled branches. It is cited from Navarino by Krog (1976), Quilhot et al. (2012) and Etayo and Sancho (2008).
28, on Nothofagus, hb. Etayo 22787.

Protousnea magellanica (Mont.) Krog
Characterised by its abundant brown apothecia with smooth margin on the main lacinia and by its dull, flaccid, foveolate surface; thallus strongly dichotomously branched, especially near the ends, which have a broom-like appearance. Reported from Navarino by Krog (1976), Quilhot et al. (2012) and Etayo and Sancho (2008) (Fig. 36).
8, on Nothofagus sp. Etayo 22708. 9, on N. pumilio, hb. Etayo 22720. 34, on N. pumilio, hb. Etayo 23056 (UMAG).

Protousnea malacea (Stirt.) Krog
With a hanging thallus that can reach up to half a meter, rigid, dull, foveolate and with an angular surface, sometimes articulated, dichotomously ramified, sterile, without isidia or secondary broom-like branches, forming a filiform thallus (Calvelo, 1998; Krog, 1976). Some samples are similar to Usnea articulata. Patagonian species recorded from Navarino by Etayo and Sancho (2008) (Fig. 36).
Protousnea scrobiculata (Cengia Sambo) Krog

It is the only terricolous species of the genus. According to Krog (1976) it is typical of Empetrum nigrum heaths along with species of Alectoria, Cetraria and Hypogymnia. Common in the high parts of Navarino.

Pseudephebe minuscula (Nyl.) Brodo & D. Hawksw.

Quite common in alpine areas, where it is blackening large areas of the rocks.

Garrido-Benavent et al. (2020) studied this species and P. pubescens (L.) M. Choisy and came to the conclusion that this last species lives only in Europe, while P. minuscula is a bipolar species with records in Antarctica, South America and South Asia.

Some authors recorded P. pubescens from Navarino, like Redón and Quilhot (1977), Etayo and Sancho (2008) and Laguna-Defior (2017) but these records must belong to P. minuscula.

3, on small stones on alpine soil with Bolax, J. Etayo 22272 (UMAG). 4, acidic rock (o.c.). Ibidem, on Bolax, Etayo 22440. 25, crested rock, J. Etayo 22847 (UMAG). 16, on highly exposed acidic rocks, MAF 15925, 15691.

Pseudocyphellaria citrina (Gyeln.) Lücking, Moncada & S. Stenroos

In his monography of Pseudocyphellaria from cool temperate South America Galloway (1992) considered P. crocata as common in Chile and Argentina from 30°S southwards 56°S and remarked that it was a very variable species. More recently, Lücking et al. (2017) has shown that material identified as P. crocata in the Americas represented thirteen species, and that none of
them is *P. crocata*. Thus, the presence of *P. crocata* is very unlikely in Navarino where it has been recorded by Santesson in Fryday (2020), Redón and Quilhot (1977), Galloway (1992), Galloway *et al.* (1995), Etayo and Sancho (2008) and Quilhot *et al.* (2012). Thus, our samples fit well with description of *P. citrina* recorded by Lücking *et al.* (2017) who also had a record from Navarino (Fig. 37).

Pseudocyphellaria coriifolia (Müll. Arg.) Malme

One of the most common species of the genus in Navarino. Santesson collected it in 1940 from Navarino and Hoste islands (Fryday, 2020) and Galloway *et al.* (1995), Redón and Quilhot (1977), Etayo and Sancho (2008) and Quilhot *et al.* (2012) from Navarino.

Pseudocyphellaria dubia Du Rietz

Mainly known from Tierra del Fuego where it grows in *Nothofagus* forests, both on logs and on mossy rocks (Galloway, 1986). Santesson collected it in 1940 from Navarino and Hoste islands (Fryday, 2020). Recorded from Navarino by Galloway *et al.* (1995) and Quilhot *et al.* (2012).

Pseudocyphellaria faveolata (Delise) Malme

Very rare in Navarino, where it was only found in a coastal locality, on fallen and horizontal trunks of thick *N. betuloides*, in lichen communities dominated by *Pseudocyphellaria* spp. Collected by Santesson in 1940 from Hoste Island (Fryday, 2020) and by Etayo and Sancho (2008) from Navarino.

44, on *Nothofagus betuloides*, hb. Etayo 24491 (UMAG).

Pseudocyphellaria freycinetii (Delise) Malme

Collected by Santesson in 1940 from Hoste Island (Fryday, 2020) and recorded from Navarino by Redón and Quilhot (1977), Galloway *et al.* (1995), Etayo and Sancho (2008) and Quilhot *et al.* (2012) (Fig. 38).

13, on vertical wall (o.c.). 14, on a mossy vertical wall, next to *P. glabra* (o.c.). 11, on an acidic soil (o.c.). 3, alpine soil with *Bolax*, J. Etayo 22271 (UMAG). 4, on acidic soil, hb. Etayo 22408, 22412; *ibidem*, J. Etayo 22418 (MAF). 6, on rock humus, hb. Etayo 22652 (UMAG). 16, on tundra

Pseudocyphellaria glabra (J.D. Hooker & Taylor) Dodge

Locally frequent, especially in rocky areas near the sea, very variable, thalli can be completely covered with digitiform isidia or develop them scarcely on the edge of the thallus. It appears in the Santesson list from Navarino and Hoste islands (Fryday, 2020) and is cited by Etayo and Sancho (2008) from Navarino.

Pseudocyphellaria granulata (C. Bab.) Malme

1, on *N. pumilio*, hb. Etayo 22133, 22127 (UMAG). 2, on *N. pumilio*, J. Etayo 22168 (MAF, UMAG), hb. Etayo 22169. 6, on *N. betuloides*, J. Etayo 22639 (UMAG); *ibidem*, hb. Etayo 22665. 7, on *N. pumilio*, hb. Etayo 22680. 8, on *N. pumilio*, hb. Etayo 22223. 15, on *N. pumilio*, hb. Etayo
Pseudocyphellaria hillii (Dodge) Galloway
A common species in Navarino that lives frequently together with P. lechleri from which it is distinguished by the isidia or phyllidia on the laminal ridges. Apothecia are normally absent but abundant in some cases.
Recorded from Navarino by Etayo and Sancho (2008).
1, on N. pumilio, hb. Etayo 22137. 2, N. pumilio, hb. Etayo 22181 (UMAG).
6, on Nothofagus sp., hb. Etayo 22661. 7, on N. pumilio, hb. Etayo 22688; ibidem J. Etayo 22702 (UMAG).
14, subvertical rock, hb. Etayo 22212. 8, trunk of N. pumilio, hb. Etayo 22231. 9, on Nothofagus sp., hb. Etayo 22725.
11, on N. pumilio, hb. Etayo 22261 (MAF), hb. Etayo 22456, 22464 (UMAG).
15, on N. pumilio, hb. Etayo 22476. 18, on Nothofagus sp., J. Etayo 22557 (UMAG). 19, on N. pumilio, J. Etayo 22576 (UMAG).
29, on thick Nothofagus, hb. Etayo 22864. 34, on N. pumilio, hb. Etayo 23054. 38, on Nothofagus, hb. Etayo 23002. 57, on N. pumilio, J. Etayo 24516 (UMAG).
44, on N. betuloides, hb. Etayo 24495.

Pseudocyphellaria hirsuta (Mont.) Malme
Similar to P. obvoluta from which it differs by having cyanobacteria instead of green algae. From P. dubia it differs in the absence of soralia.
Known from Argentina and Chile, including Navarino (Galloway, 1986; Galloway et al. 1995). It is included in the Santesson lichens collected in 1940 from Navarino (Fryday, 2020) but we have not collected it on the island.

Pseudocyphellaria intricata (Del.) Vainio
Very uncommon on Navarino, we only found small thalli on bryophytes growing on coastal rocks.
28, on saxicolous bryophytes hb. Etayo 22782 (UMAG); ibidem, J. Etayo 22793 (MAF); ibidem U. Søchting 10355 (C).
29, on rocks in the forest, hb. Etayo 22875.

Pseudocyphellaria lechleri (Müll. Arg.) Du Rietz
It is included in Santesson list of lichens from Navarino and Hoste Islands (Fryday, 2020) and also recorded by Redón and Quilhot (1977). Galloway et al. (1995), Etayo and Sancho (2008), Trest et al. (2015) and Lücking et al. (2017) from Navarino (Fig. 39).
1, on N. pumilio, hb. Etayo 22123 (UMAG). 2, on N. pumilio, hb. Etayo 22174. 5, on soil in cliffs, J. Etayo 22612 (MAF).
26, on Nothofagus sp., J. Etayo 22958 (UMAG). 28, bryophytes in rock, hb. Etayo 22784. 38, on Nothofagus, J. Etayo 23001 (MAF); ibidem, hb. Etayo 23006.

Pseudocyphellaria mallota (Tuck.) Magnusson
Similar to P. dubia from which it differs by having narrowly laciniate lobes with incised margins well attached to the substrate. Its surface is also more coriaceous to scabrid, less tomentose and of a darker colour. The lower surface is darker and tomentose than the upper side that has conspicuous yellow pseudocyphella (Galloway, 1986).
Magellanic lichen that reaches Valdivia and Juan Fernández and Tierra del Fuego and Chilean Antarctica (Galloway et al. 1995). It is included in the Santesson lichens from Navarino (Fryday, 2020) but seems to be uncommon on the island.

29, small specimens on rocks in the forest, hb. Etayo 22875.

Pseudocyphellaria neglecta (Müll. Arg.) H. Magn.

Only known with certainty from three localities. It has a thicker thallus than *P. citrina* and has marginal and laminal phyllidia instead of soredia. Rare in Navarino, on one occasion we found an enormous thallus with lobes 4 cm wide (Etayo 22823). It has been recorded from Navarino by Lücking et al. (2017).

7, on bark of *N. pumilio*, hb. Stage 22704. 8, on *Nothofagus*, hb. Etayo 22716.

27, on fallen *Nothofagus* trunk, hb. Etayo 22823.

Pseudocyphellaria pluvialis R. Sant.

Similar to *P. hirsuta*, from which it differs in its convex lobes, which are normally rolled downwards and are tomentose only at the edges, with the centre of the thallus remaining glabrous. Chilean endemic, known only from Chiloé, Valdivia and Aisén (Galloway, 1986). According to Redón (1976) this is a Valdivian element of the Chilean flora. First record from Navarino.

29, humus on rocks near the coast, hb. Etayo 22887.

Psoroma antarcticum Hong & Elvebakk

Previously known from Antarctic, Navarino, South Georgia and Bouvet Island (Park et al. 2018). It seems to be more uncommon than *P. hypnorum* in Navarino.

23, peaty soil, J. Etayo 22758 (UMAG, MAF).
Psoroma cinnamomeum Malme

Terrestrial, with brown squamules, and thick, crenate edges. Differs from Psoroma hypnorum in the colour of the thallus, which in the latter is greyish green with brown tones, and the apothecia which are cupuliform with a hairy lower surface, while in P. cinnamomeum the thallus is reddish brown and the apothecia are slightly concave without hairs. Both coexist on alpine soils, together with Pannoria hispidula. South American–Antarctic species (Søchting et al. 2004), recorded from Navarino by Etayo and Sancho (2008). Also recorded from the Falkland Islands by Fryday et al. (2019).

Psoroma fruticulosum James & Henssen

This species has large black pycnidia which open up through cracks and a thick, sometimes almost fruticose thallus. Known so far from Australia and Argentina (Calvelo, 1992).

23, rock, U. Søchting 10264 (C) (conf. P.M. Jørg.), U. Søchting 10204 (C).

Psoroma hypnorum (Vahl) Gray

The ascomata of this species are variably pilose, with samples found without (alpine floor) or with abundant short, dense hairs (on bryophytes in coastal rocks). Some samples (Etayo 23014) have a thick and squamulose thalline margin. More extensive studies about this complex are required. Recorded from Navarino by Etayo and Sancho (2008) and from the Falkland Islands by Fryday et al. (2019) (Fig. 40).

Psoroma paleaceum (Fr.) Timdal & Tønsberg

Recorded by Santesson in Naturhistoriska riksmuseet (2021) from Navarino.

Psorophorus pholidotus (Mont.) Elvebakk

Psoroma reticulatum (Hue) Zahlbr.

Characterised by its squamulose yellow-green thallus and abundant apothecia, as well as by its corticolous growth. Recorded from Navarino by Redón and Quilhot (1977) and Etayo and Sancho (2008).

1, on *N. pumilio*, hb. Stage 22124. 10, on *N. betuloides* bark, hb. Etayo 22237.

19, on *N. pumilio*, J. Etayo 22568 (UMAG).

Punctelia stictica (Delise ex Duby) Krog

According to Stenroos (1991) this species is the only one of the genus that reaches the southernmost part of South America, citing it from the Chilean Antarctic and Argentinean Tierra del Fuego. A bipolar species also known from Europe, Africa and North America. Elvebakk *et al.* (2014) recorded it also in southern South America. Recorded from Navarino by Santesson in Fryday (2020) and Etayo and Sancho (2008).

Ramalina canariensis J. Steiner

It was recorded by Santesson in Naturhistoriska riksmuseet (2021) from Navarino.

Ramalina farinacea (L.) Ach.

43, thin twigs of *Berberis*, hb. Etayo 24535.

Ramalina cf. laevigata Fr.

Fryday *et al.* (2019) recorded *R. laevigata* from the Falkland Islands.

43, on *Berberis* twigs, hb. Etayo 24535.

Ramalina terebrata Hook. & Taylor

Forms small thalli on shrub branches or tree roots and much larger thalli on protected coastal rocks. Recorded from Navarino by Redón and Quilhot (1977), Etayo and Sancho (2008) and Rozzi *et al.* (2012b) (Fig. 41).

5, on cliffs, both on subvertical rocks and on branches, hb. Etayo 22610, *ibidem* MAF 15931, 16050. 28, on *Berberis microphylla*, hb. Etayo 22814. 29, humus on coastal rocks, J. Etayo 22887 (UMAG). 44, on coastal rocks, Etayo 24521 (UMAG).

Rhizocarpon geminatum Körb.

Bipolar species that reaches the Antarctic (Øvstedal & Lewis Smith, 2001). Recorded from Navarino by Etayo and Sancho (2008).

5, rock at 10 m a.s.l., hb. Etayo 22676. 12, schistose rock near the coast, hb. Etayo 22538 (MAF).

Rhizocarpon geographicum (L.) DC.

Forms small thalli on small stones on the ground between *Rh. polycarpum* and *Lecanora polytropa*. Often on rocks together with *Tremolecia atrata*. On the ridges of the Dientes de Navarino on Navarino Island, the thallus is very thin, composed almost entirely of black hypothallus, with few whitish or yellowish areoles only discernible with a magnifying glass. Recorded from Navarino by Redón and Quilhot (1977), Rozzi *et al.* (2012b) and Quilhot *et al.* (2012).

Rhizocarpon polycarpum (Hepp) Th. Fr.

We found it terricolous in the alpine zone, forming thalli with scattered, very thin areoles and small sessile apothecia, in many cases on stones in the ground between *Rh. geographicum*, *Tephromela atrata* and *Lecanora polytropa*. Bipolar species, common in the Northern Hemisphere, known from South Georgia, Australia, South Orkney, South Shetland and the Antarctic Peninsula (Øvstedal & Lewis Smith, 2001). Recorded from the Falkland Islands by Fryday *et al.* (2019).

2, ground stones, hb. Etayo 24660, 24673. 4, siliceous ground stones, hb. Etayo 22430. 31, on rock, hb. Etayo 22919. 39, soil stones, J. Etayo 23031 (UMAG).
Rimularia andreaeicola Fryday
Described in Fryday and Øvstedal (2012) from the Falkland Islands, this is the first record outside those islands.
4, bryophytes on the ground, hb. Etayo 22432 (rev. A. Fryday).

Rimularia hepaticicola Kantvilas & Coppins
Musculose thallus, black apothecia with a distinct margin, very agglomerated forming masses of tuberculate black apothecia. Apothecia orange, K+ purple, hymenium blue, K+ orange. Asci of the *Lecanora*-type, 8-spored; ascospores biseriate inside asci, simple, ellipsoidal, thin-walled, 10–12 x 4.5 μm.

Rinodina aurantiaca Sheard
Rinodina aurantiaca was described as endemic in an area between British Columbia and North California and Alberta to Colorado and Arizona (Sheard & Mayrhofer, 2002). It is a small corticolous species similar to *R. capensis* but with a more convex, pruinose disc with pannarin crystals and less prominent margin.

Rinodina conradii Körb.
Unmistakable because of its thick-walled triseptate ascospores. We found it next to *Bibbyoa bullata*, on humus and on top of degraded *Bolax* bushes. Recorded from the Falkland Islands by Fryday et al. (2019).

Rinodina lecideina Mayrh. & Poelt
28, on rounded pebbles on the beach together with *Haematomma erythroma*, hb. Etayo 22818.

Rinodina olivaceobrunnea C.W. Dodge & G.E. Baker
33, on *Bolax*, U. Søchting 10393 (C).

Rinodina peloleuca (Nyl.) Müll. Arg.
Characterised by its grey rusty thallus with abundant pycnidia, bacilliform conidia, 3–4 x 0.5 μm, and a brown, K+ orange-yellow epihymenium, as well as its *Physconia*-type ascospores, 21–23 x 10–11.5 μm.
Common in coastal rocks between orange *Teloschistaceae* and *Lecanora flotowiana*. A southern species that was known from New Zealand and reaches the Antarctic (Øvstedal & Lewis Smith, 2001). Recorded from the Falkland Islands by Fryday et al. (2019).

Rusavskia elegans (Link) S.Y. Kondr. & Kärnefelt
Xanthoria elegans (Link) Th. Fr.
Recorded from Navarino by Quilhot et al. (2012).
32, very common on isolated rocks, hb. Etayo 23229.
Santessoniella cf. polychidioides (Zahlbr.) Henssen
Dichotomous thallus, with Scytonema and cortex, apothecia of paraplectenchymatic excipulum and simple ascospores. Appearance similar to Leptogium teretiusculum (Fig. 42).
2, N. pumilio base, hb. Etayo 22187 (det. Jørg.).

Sarcogyne privigna (Ach.) A. Massal.
Widely dispersed apothecia between granite grains in communities with Physcia and Dufourea australis in coastal rocks.
12, on coastal rocks, hb. Etayo 22531.

Schismatamma sp.
Covers large surfaces, giving a white colour, completely sorediate and with Trentepohlia it lives on sloping trunks not exposed to direct water, together with Chrysothryx candelaris and Chaenotheca stemonea.
2, N. pumilio, hb. Etayo 22182. 11, on N. pumilio, hb. Etayo 22262. 26, on old N. pumilio, J. Etayo 22969 (MAF).

Sclerococcum nothofagi Etayo, sp. nov. (Fig. 43)
Mycobank no: MB 842283
Diagnosis: Differs from other epiphytic Sclerococcum species in its muriform ascospores, with 3–7 transversal and 0–4 longitudinal septa, slightly constricted at the septa, with obtuse apex, 18–32 x 8–10.5 µm.
Typus: Navarino, Puerto Williams, trail that crosses Virgen de Lourdes towards Barranca Guarriaco by a military zone on soil over smooth slopes and thick High-Deciduos beech (Nothofagus
Ascomata dispersed, black, flat, 250–400 µm diam., with thin, concolorous margin, 30–50 µm thick. Exciple laterally 70–80 µm wide, inside subhyaline, KI-, with hyphal texture, outside dark brown, K- and paraplechtenchymatous; lower exciple brown, paraplechtenchymatous, 40–60 µm wide, with thin–walled cells. Epithecium dark brown. Hypothecium greenish brown. Hymenium colourless, 100–110 µm thick. Paraphyses septate, hyaline, capitate at the apex, with intracellular brown pigment. Asci 8-spored, long clavate to subcylindrical, with an external amyloid cap, KI+ blue, but without amyloid tholi, 85–91 x 12–18 µm. Ascospores ellipsoidal, soon brown, muriform, with 3–7 transversal and 0–4 longitudinal septa, slightly constricted in the septa, with obtuse apex, 18–32 x 8–10.5 µm (21).

This is a corticolous species, whose dispersed apothecia are living with lichens, sometimes it looks like if they were lichenicolous. *Sclerococcus* Fr. was shown to be the correct name for *Dactylospora* Körb. (Diederich *et al.* 2018). Josef Hafellner said that *Dactylospora* has brown,
1–3-submuriform ascospores (see Nash III et al. 2004), although some species, even lichenicolous, have more septa and submuriform spores. Ihlen et al. (2004) recorded two species: *S. deminutum* (Th. Fr.) Ertz & Diederich on various lichens and *S. frigidum* (Hafellner) Ertz & Diederich on *Brigantiaea fuscolutea* with spores 7-septate to muriforme, but *S. nothofagi* is the one we have seen with clearly submuriform or muriform spores.

Sclerococcum. urceolatum (Th. Fr.) Ertz & Diederich, has 3–5(–7) septate to submuriform spores, but they are 15–23 x 4–6 µm and grow commensalistic on crustose terricolous lichens. Sarrión et al. (2002) described *D. mediterranea* Sarrión & Hafellner with (3–5)–7 to submuriform spores, saprobic and corticolous in forests of central Spain; its spores are 17–24 x 5–6.5 µm.

The most similar one, with normally submuriform, sometimes muriform spores is *D. frigida* Hafellner, a lichenicolous species on *Brigantiaea fuscolutea* (Hafellner, 1985). Apart from its lichenicolous habit it differs in its larger ascomata, 0.5–0.8 mm diam., smaller hymenium to 80 µm, greenish brown to greenish blue epithecium, smaller asci, 60–70 x 12–15 µm and less muriform ascospores with 5(–7) transversal and 1–2 longitudinal septa with a KI+ blue sheath and smaller in size, 17–22 x 6–8 µm.

This species is known only from the type locality, where it grows on old and thick cortex of *Nothofagus pumilio*.

Siphula fastigiata (Nyl.) Nyl.

Shackletonia hertelii (Sächting, Övstedal & Sancho) Sächting, Frödén & Arup

A characteristic lichen growing on acidic soil or humus in Navarino. Although considered as sterile, we have found in some occasions some stromatic structures bordered by a thick margin similar to *Ochrolechia* apothecia. These are, however, formed by several cavities of perithecial aspect, easily seen from above because of several ostioles or similar structures. Hymenium I+ blue, asci unitunicate, cylindrical, ascospores 3-septate, hyaline. A. Fryday (pers. comm.) told us that these apothecia have traditionally been considered as a parasitic fungus, but this does not seem to us to be the case. Medulla K+ purple (thamnolic acid?).

Siphula ramalinoides Nyl. ex Crombie

The type of *S. ramalinoides* was collected at Puerto Bueno (Chile) and it is endemic to South America, south of latitude 42º; most samples are from Tierra del Fuego and the Strait of Magellan (Kantvilas & Elix, 2002). Our sample fits well morphologically with the type presented in Kantvilas and Elix (2002).

24, within terrestrial bryophytes, hb. Etayo 22835.

Siphulastrum mamillatum (Hook. F. & Taylor) D.J. Galloway

Squamulose thallus completely covered with isidia, blackish brown in colour. Black, lecideine apothecia, without algae in the edge. Typical of this genus is its I+ orange-red hymenium. Fryday et al. (2019) recorded this species from the Falkland Islands.

25, alpine soil between the rocky ground, hb. Etayo 22856; ibidem, J. Etayo 22648 (UMAG).
Sirenophila ovis-atra Søchting, Søgaard & Sancho
Maritime species growing in the black ‘Verrucaria’ zone. Described in Søchting et al. (2016) from Navarino, Macquarie Island and the Falkland Islands.

Sphaerophorus globosus (Huds.) Vainio
Can form large dirty orange cushions on peat bogs, on top of rocks or soil or even among tundra bushes and not uncommonly fertile.

A boreal to temperate species that reaches the Antarctic (Søchting et al. 2004). Recorded from Navarino by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977), Etayo and Sancho (2008) and Quilhot et al. (2012).

Sporastastia testudinea (Ach.) A. Massal.
4, rocky ridge at 700 m, L.G. Sancho (MAF s.n.).

Stereocaulon alpinum Laurer
Some samples (Etayo 22420) have orange, K- main branches. A bipolar-alpine species that reaches the Antarctic (Søchting et al. 2004). Recorded from Navarino by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977) and Quilhot et al. (2012).

3, alpine soil with *Bolax*, J. Etayo 22285 (UMAG). 4, soil, between mosses and grasses, hb. Etayo 22420. 12, near the coast MAF 15935. 13, vertical wall near *Cystocoleus ebeneus*, hb. Stage 22196.

Stereocaulon glabrum (Müll. Arg.) Vain.
According to Aptroot and Knaap (1993) it is a southern species restricted to the Antarctic region, New Zealand and South America. Recorded from Navarino by Etayo and Sancho (2008) and from the Falkland Islands by Fryday et al. (2019).

Sticta fuliginosa (Hoffm.) Ach.
The rarest species of the genus *Sticta* in Navarino. We found it, sterile and with abundant isidia covering its thallus, on *Nothofagus* at sea level in one single locality.

26, on humus. J. Etayo 22965 (MAF). 28, on *Nothofagus*, hb. Etayo 22788; *ibidem* MAF 15962. 29, on mossy rocks, J. Etayo 22861 (UMAG).

Sticta gaudichaldia Delise
Brownish *Sticta* of papyraceous thallus, without asexual reproductive structures. Found in Navarino on mossy soil and on low forest branches at the edge of the alpine floor. Recorded from south of Chile (Osorno, Magallanes) and Argentina (Tierra del Fuego, Falkland Islands by Galloway et al. (1995).

21, on soil and branches of *N. antarctica*, hb. Etayo 22727.

Sticta hypochra Vainio
Characterised by its distinctly stalked thallus and abundant groups of isidia on the edge of the lobes. Recorded from Navarino by Santesson in Naturhistoriska riksmuseet (2021), Redón.
and Quilhot (1977), Galloway et al. (1995), Etayo and Sancho (2008), Quilhot et al. (2012) and Trest et al. (2015, as “cf. hypochra”).

Sticta weigelii (Ach.) Vain.

Recorded from Navarino by Redón and Quilhot (1977), Quilhot et al. (2012) and from the Falkland Islands by Fryday et al. (2019).

Tasmidella variabilis Kantvilas, Hafellner & Ellis var. inactiva Kantvilas, Hafellner & Ellis

White thallus with black ascomata with a thin and persistent margin, 0.6–1 mm in diameter. Epithecium dark green. Hypothecium reddish-brown, K+ purple over time. Subhymenium up to 150 μm, hyaline. Hymenium hyaline, c. 80 μm. Asci 8-spored; ascospores 14–20 x 8–10 μm, thick-walled. Kantvilas et al. (1999) described two varieties: var. *variabilis* with yellowish olive thallus, UV+ orange-pink, C+ orange and K- and var. *inactiva*, with thallus UV-, C- and K+ yellow. This variety was only known from Tasmania growing on small twigs in *Nothofagus cunninghamii* forests.

15. on the bark of *N. pumilio*, hb. Etayo 22489 (det. A. Fryday).

Tephromela atra (Huds.) Hafellner

Recorded from rocks in Navarino by Redón and Quilhot (1977) and Quilhot et al. (2012). Surely it refers to the common next species.

Tephromela atroviolacea (Flot. in Nyl.) Fryday

Thallus with yellowish tones and UV+ blue-white medulla, but with immersed ascomata with violet hymenium and an aspicilioid appearance. In addition, these specimens have small widely ellipsoidal ascospores of c. 10 x 5–6 μm. Fryday (2011) states that it is frequent in the Falkland Islands and Isla de los Estados, but very rare in other locations like Kerguelen Islands and Argentinian Tierra del Fuego.

Tephromela cf. tropica Kalb

Corticolous and with large, whitish blue, K-, UV- soralia and apothecia similar to *T. atra*. Our sample was compared with the lignicolous *T. lignicola* Orange & Fryday (Fryday, 2019a) from the Falkland Islands and it is really another species (Fig. 44).

27. on smooth bark of *N. pumilio*, hb. Etayo 22819. 48. on *N. pumilio*, hb. Etayo 23106.

Tephromela skottsbergii (Darb.) Fryday

Similar to *T. atra* but characterized by inspersed hymenium and slightly shorter conidia (Fryday, 2011). Our specimen forms islets on thalli of *Haematoma erythrocoma* on coastal rocks. Widespread and frequent in the southern subpolar region, where it has been confused with *T. atra*. In South America has been recorded from Tierra del Fuego and Falkland Islands by Fryday (2011).

41. on the *Haematoma erythrocoma* thallus in coastal rocks, hb. Etayo 23223.

Tetramelas graminicola (Øvstedal) Kalb

Buellia graminicola Øvstedal

Yellowish-grey thallus, granular, sometimes with a grey surface. Ascomata of 0.7–1.2 mm in diameter, widespread, sessile, flat disc, epruinose and with a persistent margin. Dark brown exciple, K+ yellow in solution. Hymenium without oily droplets, paraphyses capitate at the apex, black in colour. Ascospores 3-septate, brown, ellipsoidal, thick-walled, 25–32 x 10–11.5 μm.

According to Nordin (2000) it has 6-O-methylarthothelin as its main substance (C+ yellow). We did not carry out chemical analyses, but all the characteristics of this species known from South Georgia fully coincide with our specimens, except for the flexuous or even crenulate margin (Nordin, 2000). On these islands it grows on the basis of grasses (*Parodoichloa flabellata*) and *Colobanthus* shoots. Söchting et al. (2004) collected similar samples but with different chemotypes from the Antarctic, and point out the need for a more extensive study of this group. We found it directly on whitish *Bolax* bushes. Fryday (2019a) keyed out a *Buellia* sp. growing on *Bolax* and peat but without description.

16, on *Bolax* bushes, hb. Etayo 22524. 18, on soil bryophytes, hb. Etayo 22579. 29, on plant debris, UMAG 22894. 39, on dead *Bolax*, with *Lecanora epibryon*, J. Etayo 23027 (UMAG).

Thamnolia vermicularis (Sw.) Schaer.

Abundant on alpine soil together with *Cetraria aculeata*, *C. islandica*, *Ochrolechia frigida*, and *Sphaerophorus globosus*. Recorded from Navarino by Redón and Quilhot (1977), Etayo and Sancho (2008), Quilhot et al. (2012) and Laguna-Defior (2017) (Fig. 45).

Thelenella muscorum (Fr.) Vain. var. octospora (Nyl.) Coppins & Fryday

According to Smith et al. (2009) the species was known from Europe.

42, on bryophytes on _Nothofagus_ basis, hb. Etayo 24690 (duplicate McCarthy).

Thelotrema hians Stirt.

Among the species of subantarctic thelotremoid lichens that appear in Lumbsch et al. (2010) this taxon coincides with _T. hians_ by the following characteristics: K+ red thallus, thelotremoid ascomata and ascospores 53–65 x 12–13 µm, with 13–15 cells, I+ light blue. _T. hians_ was only known from New Zealand.

42, bark of _N. pumilio_, hb. Etayo 24681.
Thelotrema lepadinum (Ach.) Ach.
Mentioned by Lumbsch et al. (2010) from Magallanes and Chilean Antarctica.
11, on *N. pumilio*, hb. Etayo 22256.

Thelotrema subtile Tuck.
Asci 8-spored, each one with 9–13 transverse septa, 38–50 x 8–12 µm. The excipulum and thalline hyphae are I+ violet, as are the ascospores.
This species has recently been cited from Subantarctic areas, specifically Argentina, Chile and New Zealand by Lumbsch et al. (2010). In Chile, from the Brunswick Peninsula.
38, on *N. pumilio*, hb. Etayo 23004 (hb. Sipman).

Thelotrema sp. 1
Related to *T. lepadinum* and *T. subtile*, it differs from the latter in its higher hymenium and larger ascospores. Spores are sometimes seen with a central longitudinal septum.
It appears in the form of small thalli among other lichens, such as *e.g.* *Coccotrema cucurbitula*.
18, on *Nothofagus* sp., hb. Etayo 22564, 22565 (hb. Sipman).

Thelotrema sp. 2
This specimen shows very large ascospores, typically wide, de 85–110 x 31–37 µm, 1(–3) per ascus, submuriform.
26, on bark of *Nothofagus* sp., hb. Etayo 22957 (hb. Sipman).

Trapeliopsis flexuosa (Fr.) Coppins & P. James
We found thalli with many apothecia on fallen hard wood.

Trapeliopsis granulosa (Hoffm.) Lumbsch
We find it with abundant apothecia on carbonized wood of burnt trunks together with *Hypocenomyce scalaris*.
Its bipolar distribution was already pointed out by Øvstedal and Gremmen (1995) who cited it from Isla Argentina (Antarctica) on *Polytrichum* turf. Fryday et al. (2019) recorded it from the Falkland Islands.
37, burnt wood, hb. Etayo 22987, J. Etayo 22988 (UMAG).

Tremolecia atrata (Ach.) Hertel
A cosmopolitan species that reaches the Antarctic (Søchting et al. 2004). Fryday et al. (2019) recorded it from the Falkland Islands.
4, on schists, hb. Etayo 22425. 18, on rocky ground, hb. Etayo 22560, 15847. 25, ridge rock, MAF 22843. In the micrometeorological station above Cerro Bandera, 700 m. (MAF).

Umbilicaria decussata (Vill.) Zahlbr.
In the micrometeorological station above Cerro Bandera, 700 m (not yet included in MAF).

Umbilicaria nylanderiana (Zahlbr.) H. Magn.
Bipolar-alpine species, very common in alpine and polar areas of the North Hemisphere, also recorded from maritime Antarctica (Olech, 2004; Sancho et al. 1992).
Recorded by Santesson in Naturhistoriska riksmuseet (2021) from Navarino.
14, on small boulders, MAF 20723.
Umbilicaria polyrrhiza (L.) Fr.

It is recorded from the Falkland Islands by Fryday et al. (2019). In the micrometeorological station above Cerro Bandera, 700 m (not yet included in MAF).

Umbilicaria umbilicarioides (Stein.) Krog & Swinscow

18, on an isolated stone, hb. Etayo 22599; J. Etayo 20716 (MAF, UMAG). 23, on rocks, hb. Etayo 22762.

Umbilicaria vellea (L.) Hoffm.

13, on rock, MAF 20721 (UMAG).

Usnea acromelaena Stirt.

Usnea aurantiaco-atra (Jacq.) Bory

Very characteristic by its large apothecia with black disc. Antarctic and Subantarctic species that reaches Southern South America (Søchting et al. 2004). Some thalli are totally black and violet, but they do not seem to have associated lichenicolous fungi. Recorded by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977), Walker (1985), Etayo and Sancho (2008), Rozzi et al. (2012b), Fernández-Moriano et al. (2016), Laguna-Defior (2017) and Lagostina et al. (2021) from Navarino (Fig. 46).

2, on boulder J. Etayo 24633 (UMAG); *ibid.*, pebbles on the ground, hb. Etayo 24664. 3,

Usnea contexta Motyka

Usnea kuehnemannii Motyka
1, on *N. pumilio*, hb. Etayo 22142. 6, on *Nothofagus* sp., hb. Etayo 22666. 8, *Nothofagus* sp., hb. Etayo 22718. 38, on *N. pumilio*, J. Etayo 22992 (UMAG).

Usnea patagonica F.J. Walker
Recorded by Walker (1985) and Santesson in Naturhistoriska riksmuseet (2021) from Navarino.

Usnea perpusilla (I.M. Lamb) F.J. Walker
Recorded from Navarino by Etayo and Sancho (2008). 21, on rocks, MAF 15870 (UMAG).

Usnea cf. sphacelata R. Br.
Several thalli of *Usnea* with grey colored soralia are recorded here. Recorded from Navarino by Etayo and Sancho (2008).
4, rocks, hb. Etayo 22444. 28, on *Nothofagus* sp., hb. Etayo 22779; hb. Etayo, 22810 (MAF). 5, on thin twigs from an exposed bush, hb. Etayo 23489. 12, on *N. betuloides*, hb. Etayo 22536. 29, on twigs, J. Etayo 22895 (UMAG, MAF).

Usnea subantarctica F.J. Walker
Recorded by Laguna-Defior (2017) from Navarino.

Usnea trachycarpa (Stirton) Müll. Arg.
Recorded from Navarino by Santesson in Naturhistoriska riksmuseet (2021), Redón and Quilhot (1977), Walker (1985), Etayo and Sancho (2008), Quilhot *et al.* (2012), Rozzi *et al.* (2012b), Laguna-Defior (2017) and Lagostina *et al.* (2021) (Fig. 47).
14, on siliceous rocks, hb. Etayo 22204 (UMAG). 16, on small stones, MAF 15711. 3, pebbles on the ground, J. Etayo 22290 (UMAG). 4, on rocks, hb. Etayo 22405, 22406; *ibidem* MAF 15817. 21, on rocks, MAF 15876. 22, on rocks, hb. Etayo 22776. 25, rocks in a ridge, hb. Etayo 22846 (UMAG).

Usnea ushuaiensis (I.M. Lamb) Wirtz, Printzen & Lumbsch
Recorded by Laguna-Defior (2017) from Navarino.

Usnea sp. 1
A saxicolous species with isidiate soralia and black isidia. 28, seashore rocks, with *Parmelia saxatilis*, hb. Etayo 22812 (MAF). 37, seashore rocks, hb. Etayo 22991.
Usnea sp. 2
With many ciliate apothecia *florida*-type.
37, on thick fallen log in the beach, hb. Etayo 22986.

Verrucaria cf. *degelli* R. Sant.
Recorded from Navarino by Pérez-Ortega *et al.* (2010).

Verrucaria *dispartita* Vain.
Barely visible thallus and sessile ascomata with a rough surface, it is characterised by its small ascospores less than 10 μm long.
According to Øvstedal and Lewis Smith (2001) it is an Antarctic endemism. It is found together with *V. durietzii* and *V. tessellatula* on a coastal rocky outcrop.
41, on coastal rocks, hb. Etayo 23224.

Verrucaria *durietzii* I.M. Lamb
It is very characteristic because of its sublobed thallus crossed by stripes.
It is known from New Zealand, the Falkland Islands and Antarctica (Øvstedal & Lewis Smith, 2001).
41, on coastal rocks, hb. Etayo 23224.

Verrucaria *halizoa* Leight.
Thin, green thallus with ascomata of 0.25–0.3 mm diameter, thick involucrellum up to the middle of the ascomata and hyaline excipulum below. Ascospores of 11–13.5 x 4.5–5.5 μm.
In coastal rocks in protected locations. Recorded from Navarino by Pérez-Ortega *et al.* (2010).
28, sea pebble, hb. Etayo 22817.
Verrucaria margacea (Wahlenb. in Ach.) Wahlenb.
Thallus light greenish in colour, with large ascomata of 0.4–0.5 mm in diameter, with the involucrellum extended laterally and a brownish excipulum only in its upper half. The ascospores are large, 27–32 x 9–14 μm, with a large central oildrop.
25, on stones from the stream, hb. Etayo 22850.

Verrucaria puncticulata (P.M. McCarthy) P.M. McCarthy
Similar to V. hydrela Ach. but with a dotted thallus. Ascospores 15–19 x 7–10 μm. Known from Australia (McCarthy, 1995).
23, stones from the stream that flows into a glacial lake, very abundant, hb. Etayo 22764.

Verrucaria cf. serpuloides I.M. Lamb
Recorded from Navarino by Pérez-Ortega et al. (2010).

Verrucaria tessellatula Nyl.
It is characterised by its rimose, brownish thallus, with black edges and hyaline bordered ascomata except for the upper part. According to Øvstedal and Lewis Smith (2001) Antarctic-South Shetland endemic. Very common on stones washed by high tide, which it colours brown.
5, rocks splashed by seawater, hb. Etayo 22626. 41, on coastal rocks, hb. Etayo 23224.

Vězdaea aestivalis (Ohl.) Tsch.-Woess & Poelt
Green thallus, composed of goniocysts without hyaline projections towards the outside. Adnate ascomata with a convex disc and without a clear border, light brown disc, 0.4–0.7 mm in diameter, without discernible epihymenium or hypothecium. Hymenium cream coloured, formed by a large number of asci, each one of them wrapped in a net of septate paraphyses, very short, ramified-anastomosing, of 1.5–3 μm, often capped at the apices, which reach 3–5.5 μm. Asci claviform, 8-spored; ascospores biseriate inside the ascus, narrowly ellipsoidal, straigh, sometimes curved, simple, rarely 1-septate with a thick central drop, of smooth wall, 15–20 x 4–7 μm.
We find it well fruiting on land on a cliff edge at about 10 m high very close to the coast. Until now, it was only known from Europe.
5, soil on rock at 10 m a.s.l., hb. Etayo 22678.

Villophora darwiniana Søchting, Søgaard & Arup
On bark of Nothofagus. Recorded from several localities on Navarino Island by Søchting et al. (2021).

Villophora isidioclada (Zahlbr.) Søchting, Frödén & Arup
Recorded from maritime rocks on Navarino Island by Søchting et al. (2021).

Villophora onas Søchting, Søgaard & Arup
Saxicolous on basaltic overhang. Recorded from Paso Mladineo on Navarino Island by Søchting et al. (2021).

Villophora wallaceana Søchting & Søgaard
On bark of Nothofagus pumilio. Described from pristine forest on Navarino Island by Søchting et al. (2021), and is so far endemic to the island.
5, on exposed twigs, hb. Etayo 22623, 23488.
Xanthoparmelia mougeotii (Schaer. ex D. Dietr.) Hale

Elvebakk et al. (2014) recorded it as probably common in Southern South America. Recorded by Santesson in Fryday (2020).

12, schists near the coast, hb. Etayo 22535.

Xanthoparmelia submougeotii Hale

The type material comes from Juan Fernández Island (Chile) (Hale, 1990), but the species seems to be known also from Magallanes (Adler & Calvelo, 2002). These authors refer to it as a Patagonian–Andean element. According to Elvebakk et al. (2014) it is very common in Southern South America. Recorded from Navarino by Etayo and Sancho (2008).

5, rock, 10 m a.s.l., hb. Etayo 22676, vertical and protected wall, hb. Etayo 22200. 28, siliceous rocks near the sea, hb. Etayo 22797, 22801. 37, rocky outcrops near the sea, hb. Etayo 22983.

Xanthopsoroma soccatum (R. Br. ex Cromb.) Elvebakk

Psoroma soccatum R. Br. ex Cromb.

This austral species is distinguished by its corticolous habitat and by the formation of small squamules (smaller than 1 mm in diameter) on a wide black hypothallus, which carry labriform to laminar soralia, all of which are of a yellowish colour (usnic acid and terpenoids). Our specimen has no apothecia.

11, abundant on N. pumilio, hb. Etayo 22454 (MAF) (conf. Jørg.).

Xenolecia spadicomma (Nyl.) Hertel

Named as Bellemerea diamarta (Ach.) Hafellner & Roux in Etayo and Sancho (2008) as the host for Opegrapha reactiva (Alstrup & D. Hawksw.) Etayo & Diederich. This species has a rimose–areolate thallus, cream to orange colored, apothecia are black flat to concave and large ascospores, 24–26 x 8–10 μm in our samples and it is characterised by its particular habitat, living on inundated rocks of streams.

Common on pebbles around the shore of Róbalo Lake; these pebbles are ochre colored because of this species. The type comes from Isla Wellington (Chile) and it is also known from Falkland Islands to northern Patagonia (Fryday & Thus, 2017).

26, on pebbles in or near the water, hb. Etayo 22943.

Xylographa parallela (Ach.) Fr.

Recorded from Navarino by Spribille et al. (2014).

Xylographa aff. trunciseda (Th. Fr.) Minks ex Redinger

Endophloeodal thallus, it has convex apothecia, brownish–orange to brownish–black coloured, with or without a thin border. Its features fit well with this species which, however, is not cited from the Southern Hemisphere (Spribille et al. 2014).

26, on Nothofagus wood, hb. Etayo 22956.

Xylographa aff. vermicularis T. Sprib.

Recorded from Navarino by Spribille et al. (2014).
Xylographa vitiligo (Ach.) Laundon

We found it together with *X. parallela*, some thalli being very sorediate, with long, greenish to brownish, soralia, K+ yellow, P+ orange, that could belong to this species or be the rarely sorediate form of *X. vitiligo* (Spribille *et al.* 2014).

2, wood in the forest, hb. Etayo 22185, 24645. 15, wood of *N. pumilio*, hb. Etayo 22498.

Zahlbrucknerella maritima Henssen

Recorded by Santesson in Naturhistoriska riksmuseet (2021) from Navarino.

Lichenicolous fungi. A complement to Etayo and Sancho (2008).

Corticiruptor corallinus Etayo

This species was described in Etayo and Sancho (2008) as a fungus growing on *Pseudocyphellaria crocata* but it really was growing on *P. citrina* (see this species in the catalogue).

Lambiella insularis (Nyl.) T. Sprib.

Rimularia insularis (Nyl.) Rambold & Hertel

On *Lecanora rupicola* thallus, forming small spots of a few mm diam. that end up deteriorating the thallus of the host. We recorded before from Navarino but from another location.

12, on rocks near the coast, hb. Etayo 22533.

Sclerococcum australis (Triebel & Hertel) Ertz & Diederich

It was already recorded from Navarino (Etayo & Sancho, 2008), not on this host, but on *Coccotrema, Lecidea* and *cf. Porpidia*.

2, on *Poeltidea perusta* on pebbles on the ground, together with *Usnea aurantiaco-atra*, hb. Etayo 24664.

Tremella haematommatis Diederich

This is the only species of *Tremella* known as a parasite of *Haematomma*. It was described (Diederich, 1996) on *H. puniceum* from U.S.A. (Florida and Louisiana). We have found it on one occasion on *H. notophagi*. Basidiomata are very similar to those described but basidia are not completely developed. It is a new record for South America.

2, on *Haematomma notophagi* on *N. pumilio*, hb. Etayo 24637.

Excluded species of lichens from Navarino

Belleremea diamarta (Ach.) Hafellner & Roux

This species was recorded in Etayo and Sancho (2008) as the host for *Opegrapha reactiva* (Alstrup & D. Hawksw.) Etayo & Diederich. However, it belongs to an austral genus different to Bellemerea (see *Xenolecia spadicomma* in this paper).

Choenotheca furfuracea (L.) Tibell

It appears between Santesson records from Navarino (Fryday, 2020), See above text about *C. brachypoda*.
Flavoparmelia caperata (L.) Hale
Recorded by Quilhot et al. (2012) from Navarino, but probably erroneously. We have not found in Navarino anything similar to this species.

Massalongia carnosa (Dicks.) Körb.
See discussion under M. patagonica in this paper.

Ochrolechia parella (L.) A. Massal.
A subcosmopolitan, saxicolous, siliceous species, generally found in South America in coastal rocks. Several citations from southern Argentina and Chile appear in Messuti and Lumbsch (2000) as O. parella but its real name is O. antarctica (Ertz et al. 2016).

Pseudephebe pubescens (L.) M. Choisy
See discussion under P. minuscula in this paper.

Pseudocyphellaria crocata (L.) Vain.
See discussion under P. citrina in this paper.

Usnea antarctica Du Rietz
This species has been recorded from Navarino and Southern South America by several authors like Walker (1985), Etayo and Sancho (2008) and Laguna-Defior (2017). It was considered an Antarctic species that reaches Southern South America (Søchting et al. 2004). Recent leaded by Lagostina et al. 2021 confirm that this species is probably inexistent at Navarino neither in other South America zones.

Xanthoria parietina (L.) Th. Fr.
Etayo and Sancho (2008) recorded Arthonia sytnikii S. Kondr. growing on X. parietina on coastal rocks, but this host really belongs to Dufourea.

ACKNOWLEDGEMENTS
Several specialists have contributed to the study of some of the samples: O. Breuss (Catapyrenium), B. Coppins (Micarea), M. Giralt (Rinodina), E. Llop (Bacidia), A.M. Fryday (Megalosporaceae, Tasmiella and other genera), P.M. Jørgensen (cyanolichens), B. Marbach (Buellia), Z. Palice, C. Printzen (leciideoid lichens), H. Sipman (some strange species), E. Timdal (some terricolous lichens). Many samples were sent to David Galloway over several years, some shortly before his death. Their help is warmly appreciated. We also want to thank the fellows who accompanied us in our travel across Navarino: José Manuel Blanquer, Ana Rosa Burgaz, Asunción de los Ríos, Rolf Gademann, Rosario Gavilán, Allan Green, José Antonio Molina, Sergio Pérez-Ortega, Ana Pintado, Pepe Pizarro, José Raggio, Daniel Sánchez Mata, Majbrit Søgaard, Rocio Vilches and Mercedes Vivas. We thank the Chilean Navy, the Chilean Police, the National Forestry Corporation, the Ministry of the Environment and the Ministry of National Assets for the logistical support and human capacities in the expeditions, design and development of long-term ecological studies on Navarino Island and Cape Horn Biosphere Reserve. The field work and final writing of this work has had the support of the projects for Technological Centers of Excellence with Basal Financing ANID to the Cape Horn International Center (CHIC- FB210018) and the Instituto de Ecología y Biodiversidad (IEB- AFB170008); Bienes Nacionales-CORFO to the
University of Magallanes (UMAG), Grupo Mar y Tierra (The Pew Charitable Trust-Chile) to the Omora Foundation. This is a contribution from the CBS Program, jointly coordinated by Omora Foundation, UMAG, and the University of North Texas (UNT). Financial support was also provided by the grants REN2003-07366-C02-01, CGL 2006-12179-C02-01 and PID2019-105469RB-C21 (Spanish Ministry of Science). Finally, we want to to warmly thank to D. Ertz and Ch. Printzen for their very valuable contributions to the paper and to Lorena Díaz and Francisca Massardo for their corrections and edition to the paper.

REFERENCES CITED

Calvelo, S. (1998). Keys to genera and species of Parmeliaceae s.lat. from Patagonia, Tierra del Fuego and South Atlantic Islands (Argentina). In M.P. Marcelli & M.R.D. Seaward (Eds.), Lichenology in Latin America: history, current knowledge and applications (pp. 117-128). CETESB.

Pineda Cáceres, J., Morano Büchner, S., & Vidal, D.J. (2020). Catálogo de las colecciones de líquenes de la región de Magallanes y Antártica Chilena depositadas en el herbario del Instituto de la Patagonia (HIP). Anales del Instituto de la Patagonia (Chile), 48, 7-26.

<table>
<thead>
<tr>
<th>Número afiliación</th>
<th>Nombre de la institución y/o organización Afiliación</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Navarro Villoslada 16, 3o dcha, 31003 Pamplona, Navarra, España.</td>
</tr>
<tr>
<td>2</td>
<td>Programa de Conservación Biocultural Subantártica, Parque Etnobotánico Omora</td>
</tr>
<tr>
<td>3</td>
<td>Departamento de Biología Vegetal II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, España.</td>
</tr>
<tr>
<td>4</td>
<td>Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals (BEECA), Secció Botànica i Micologia.</td>
</tr>
<tr>
<td>5</td>
<td>Institut de Recerca de la Biodiversitat (IRBio), Universitat Barcelona, Barcelona, ES-08028, España.</td>
</tr>
<tr>
<td>6</td>
<td>Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Denmark</td>
</tr>
<tr>
<td>7</td>
<td>Cape Horn International Center, Puerto Williams, Chile</td>
</tr>
<tr>
<td>8</td>
<td>Department of Philosophy and Religion & Department of Biological Sciences, University of North Texas, Denton, TX, USA</td>
</tr>
<tr>
<td>9</td>
<td>Cary Institute of Ecosystem Sciences, Millbrook, New York.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Autor</th>
<th>Afiliación</th>
</tr>
</thead>
<tbody>
<tr>
<td>Javier Etayo</td>
<td>1, 2</td>
</tr>
<tr>
<td>Leopoldo García Sancho</td>
<td>2, 3</td>
</tr>
<tr>
<td>Antonio Gómez-Bolea</td>
<td>2, 4, 5</td>
</tr>
<tr>
<td>Ulrik Sæchting</td>
<td>6</td>
</tr>
<tr>
<td>Francisco Aguirre</td>
<td>2, 7</td>
</tr>
<tr>
<td>Ricardo Rozzi</td>
<td>2, 7, 8, 9</td>
</tr>
</tbody>
</table>

Apéndice: Afiliación de cada autor