Gradientes Climáticos y su alta influencia en los ecosistemas terrestres de la Reserva de la Biosfera Cabo de Hornos, Chile

Contenido principal del artículo

Francisco Aguirre
Francisco A. Squeo
David López
Ramiro D. Grego
Brian Buma
Danny Carvajal
Ricardo Jaña
Gino Casassa
Ricardo Rozzi

Resumen

La Reserva de Biosfera Cabo de Hornos (RBCH) alberga una biodiversidad y tipos de ecosistemas únicos a nivel mundial. Éstos han sido mucho menos estudiados que sus homólogos, los ecosistemas subpolares del hemisferio norte. El objetivo de este trabajo es presentar por primera vez una detallada descripción de los marcados gradientes climáticos de la RBCH y examinar cómo éstos se interrelacionan con la distribución de ecosistemas y formaciones vegetacionales. Primero, se generó una caracterización de la distribución espacial de los ecosistemas terrestres definidos por sus especies vegetales dominantes o características físicas marcadas. En segundo lugar, se realizó una caracterización espacial de las principales variables climáticas fisicas (temperatura, precipitación, velocidad del viento y la cubierta de nieve) de la RBCH utilizando tanto productos satelitales (MOD10CM) como productos climáticos grillados (CR2MET y ERA5). Éstos fueron luego contrastados con registros empíricos de las estaciones meteorológicas que son administradas por la Armada de Chile y/o la Dirección General de Aguas (DGA). En tercer lugar, se caracterizaron los gradientes climáticos en base a un Análisis de Componentes Principales (PCA) con las variables climáticas más representativas aquí analizadas: velocidad del viento, temperatura de verano, elevación, cubierta de nieve y precipitación anual Se detectaron dos comportamientos (gradientes) muy nítidos: (i) uno con forma con- céntrica asociado principalmente a la cubierta de nieve, temperaturas de verano y la elevación; y (ii) un patrón caracterizado por la precipitación (>50%) con una orientación inclinada en dirección noroeste (mayor precipitación) a sureste (menor precipitación) asociado con una tasa de disminución de precipitación a lo largo de 100 kilómetros de 30 mm/km (~54ºS). En cuarto lugar, se analizó la interrelación entre estos gradientes climáticos y la distribución de ecosistemas para la definición de los gradientes ambien- tales utilizando Componentes Canónicos (CCA) obteniendo una Inercia restringida de 0,74. Ambos gradientes climáticos influyeron significativamente sobre la distribución de los principales tipos de ecosistemas terrestres aquí descritos. Éstos se segregan principalmente por los gradiente de la elevación y la precipitación: los ecosistemas de glaciares, vegetación altoandina, bosque siempreverde y deciduos. La precipitación es el principal factor que segrega la distribución de los bosques siempreverde y de bosques mixtos (siempreverde-deciduos) y/o deciduos. Por otra parte, la distribución de los ecosistemas de turberas y praderas se asocia principalmente con la intensidad de los vientos en zonas más expuestas. Estudios recientes indican que cambios en el régimen de precipitación y temperatura, forzado principalmente por el Modo Anular del Sur (SAM) y la Oscilación Decadal del Pacífico (PDO), han favorecido el avance hacia mayores altitudes de los bosques de lenga (Nothofagus pumilio). Este ascenso en el gradiente altitudinal de los ecosistemas forestales genera una constricción en el área de los ecosistemas altoandinos ubicados por sobre el límite arbóreo. Por lo tanto, en el escenario de calentamiento global una de las floras más amenazadas en la RBCH corresponde a la flora subantártica altoandina.

Descargas

Los datos de descargas todavía no están disponibles.

Detalles del artículo

Cómo citar
Aguirre, F. ., Squeo, F. A. ., López, D., Grego, R. D., Buma, B., Carvajal, D. ., Jaña, R., Casassa, G., & Rozzi, R. (2021). Gradientes Climáticos y su alta influencia en los ecosistemas terrestres de la Reserva de la Biosfera Cabo de Hornos, Chile. Anales Del Instituto De La Patagonia, 49. https://doi.org/10.22352/AIP202149012
Sección
Artículos

Citas

Aguirre, F., Carrasco, J., Sauter, T., Schneider, C., Gaete, K., Garín, E., Adaros, R., Butorovic, N., Jaña, R., & Casassa, G. (2018). Snow Cover Change as a Climate Indicator in Brunswick Peninsula, Patagonia. Frontiers in Earth Science, 6, 130. https://www.frontiersin.org/article/10.3389/feart.2018.00130

Alberdi, M. (1995). Ecofisiología de especies leñosas de los bosques hidrófilos templados de Chile: resistencia a la sequía y bajas temperaturas. En: Ecología de los bosques nativos de Chile [J. Armesto, C. Villagrán y M.T.K. Arroyo(eds)], pp. 279-299. Editorial Universitaria.

Alvarez-Garreton, C., Mendoza, P. A., Boisier, J. P., Addor, N., Galleguillos, M., Zambrano-Bigiarini, M., Lara, A., Cortes, G., Garreaud, R., & McPhee, J. (2018). The CAMELS-CL dataset: catchment attributes and meteorology for large sample studies-Chile dataset. Hydrology and Earth System Sciences, 22(11), 5817–5846.

Anderson, C. B., Rozzi, R., Torres-Mura, J. C., Mcgehee, S. M., Sherriffs, M. F., Schüttler, E., & Rosemond, A. D. (2006). Exotic vertebrate fauna in the remote and pristine sub-Antarctic Cape Horn Archipelago, Chile. Biodiversity & Conservation, 15(10), 3295-3313.

Arno, S. F. (1984). Timberline: mountain and arctic forest frontiers. The Mountaineers. Retrieved from https://www.cabdirect.org/cabdirect/abstract/19850605664

Balsamo, G., Albergel, C., Beljaars, A., Boussetta, S., Brun, E., Cloke, H., Dee, D., Dutra, E., Muñoz-Sabater, J., & Pappenberger, F. (2015). ERA-Interim/Land: a global land surface reanalysis data set. Hydrology and Earth System Sciences, 19(1), 389–407.

Bozkurt, D., Rojas, M., Boisier, J. P., Rondanelli, R., Garreaud, R., & Gallardo, L. (2019). Dynamical downscaling over the complex terrain of southwest South America: present climate conditions and added value analysis. Climate Dynamics, 53(11), 6745-6767. https://doi.org/10.1007/s00382-019-04959-y

Braun, M. H., Malz, P., Sommer, C., Farías-Barahona, D., Sauter, T., Casassa, G., Soruco, A., Skvarca, P., & Seehaus, T. C. (2019). Constraining glacier elevation and mass changes in South America. Nature Climate Change, 9(2), 130–136.

Buma, B., Holz, A., Díaz, I., & Rozzi, R. (2021). The world’s southernmost tree and the climate and windscapes of the southernmost forests. Ecography , 44(1), 14-24. https://doi.org/10.1111/ecog.05075

Carrasco, J. F., Casassa, G., & Rivera, A. (2002). Meteorological and Climatological Aspects of the Southern Patagonia Icefield (pp. 29-41). Springer. https://doi.org/10.1007/978-1-4615-0645-4_4

Carrasco, J. F., Osorio, R., & Casassa, G. (2008). Secular trend of the equilibrium-line altitude on the western side of the southern Andes, derived from radiosonde and surface observations. Journal of Glaciology, 54(186), 538-550.

Carrivick, J. L., Davies, B. J., James, W. H. M., Quincey, D. J., & Glasser, N. F. (2016). Distributed ice thickness and glacier volume in southern South America. Global and Planetary Change, 146, 122-132.

Cavieres, L. A., & Piper, F. I. (2004). Determinantes ecofisiológicos del límite altitudinal de los árboles. Fisiología Ecológica En: Plantas: Mecanismos y Respuestas a Estrés En Los Ecosistemas [Cabrera H.M. (ed)], 221-234. Editorial Universitaria.

Chen, X., Long, D., Liang, S., He, L., Zeng, C., Hao, X., & Hong, Y. (2018). Developing a composite daily snow cover extent record over the Tibetan Plateau from 1981 to 2016 using multisource data. Remote Sensing of Environment, 215, 284-299. https://doi.org/10.1016/J.RSE.2018.06.021

Clem, K. R., Renwick, J. A., McGregor, J., & Fogt, R. L. (2016). The relative influence of ENSO and SAM on Antarctic Peninsula climate. Journal of Geophysical Research: Atmospheres, 121(16), 9324-9341. https://doi.org/10.1002/2016JD025305

Contador, T., Kennedy, J., Ojeda, J., Feinsinger, P., & Rozzi, R. (2014). Ciclos de vida de insectos dulceacuícolas y cambio climático global en la ecorregión subantártica de Magallanes: investigaciones ecológicas a largo plazo en el Parque Etnobotánico Omora, Reserva de Biosfera Cabo de Hornos (55° S). Bosque (Valdivia), 35(3), 429-437. https://doi.org/10.4067/S0717-92002014000300018

Copernicus Climate Change Service (C3S) (2017). ERA5: Fifth generation of ECMWF atmospheric reanalyses of the global climate.

Cowan, D. A., & Tow, L. A. (2004). Endangered Antarctic Environments. Annual Review of Microbiology, 58(1), 649-690. https://doi.org/10.1146/annurev.micro.57.030502.090811

Dixon, P. (2003). VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14(6), 927-930.

Dodson, R., & Marks, D. (1997). Daily air temperature interpolated at high spatial resolution over a large mountainous region. Climate Research, 8(1), 1-20.

Dollenz, O. (1980). Estudios fitosociológicos en el archipiélago Cabo de Hornos. I.-Relevamientos en caleta Lientur, isla Wollaston y surgidero Romanche, isla Bayly. Anales del Instituto de la Patagonia, 11, 225–238.

Easterling, D. R., Kunkel, K. E., Wehner, M. F., & Sun, L. (2016). Detection and attribution of climate extremes in the observed record. Weather and Climate Extremes, 11, 17-27. https://doi.org/10.1016/J.WACE.2016.01.001

Elith, J., & Leathwick, J. R. (2009). Species Distribution Models: Ecological Explanation and Prediction Across Space and Time. Annual Review of Ecology, Evolution, and Systematics, 40(1), 677-697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

Flato, G., Marotzke, J., Abiodun, B., Braconnot, P., Chou, S. C., Collins, W., Cox, P., Driouech, F., Emori, S., & Eyring, V. (2014). Evaluation of climate models. In Climate change 2013: the physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 741–866). Cambridge University Press.

Foley, J. A., Costa, M. H., Delire, C., Ramankutty, N., & Snyder, P. (2003). Green surprise? How terrestrial ecosystems could affect earth’s climate. Frontiers in Ecology and the Environment, 1(1), 38-44.

Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly, R., & Robinson, D. A. (2012). A review of global satellite-derived snow products. Advances in Space Research, 50(8), 1007-1029. https://doi.org/10.1016/J.ASR.2011.12.021

Garreaud, R. (2018). Record-breaking climate anomalies lead to severe drought and environmental disruption in western Patagonia in 2016. Climate Research, 74(3), 217-229. https://doi.org/10.3354/cr01505

Garreaud, R., López, P., Minvielle, M., & Rojas, M. (2013). Large-Scale Control on the Patagonian Climate. Journal of Climate, 26(1), 215-230. https://doi.org/10.1175/JCLI-D-12-00001.1

GDAL/OGR contributors. (2020). {GDAL/OGR} Geospatial Data Abstraction software Library. Retrieved from https://gdal.org

Glasser, N. F., Jansson, K. N., Harrison, S., & Kleman, J. (2008). The glacial geomorphology and Pleistocene history of South America between 38°S and 56°S. Quaternary Science Reviews, 27(3-4), 365-390. https://doi.org/10.1016/J.QUASCIREV.2007.11.011

Gleckler, P. J., Taylor, K. E., & Doutriaux, C. (2008). Performance metrics for climate models. Journal of Geophysical Research: Atmospheres, 113(D6).

Hansen, M. C., Potapov, P. V, Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V, Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science (New York, N.Y.), 342(6160), 850–853. https://doi.org/10.1126/science.1244693

Hijmans, R. J., & van Etten, J. (2016). raster: Geographic data analysis and modeling. R Package Version, 2(8).

Kassambara, A., & Mundt, F. (2017). Package ‘factoextra’. Extract and Visualize the Results of Multivariate Data Analyses, 76.

Kent, M. (2011). Vegetation description and data analysis: a practical approach. John Wiley & Sons.

Kohshima, S. (1985). Migration of the Himalayan wingless glacier midge (Diamesa sp.): slope direction assessment by sun-compassed straight walk. Journal of Ethology, 3(2), 93-104.

Kohshima, S., Takeuchi, N., Uetake, J., Shiraiwa, T., Uemura, R., Yoshida, N., Matoba, S., & Godoi, M. A. (2007). Estimation of net accumulation rate at a Patagonian glacier by ice core analyses using snow algae. Global and Planetary Change, 59(1–4), 236–244.

Körner, C. (1998). A re-assessment of high elevation treeline positions and their explanation. Oecologia, 115(4), 445-459. https://doi.org/10.1007/s004420050540

Legendre, P., & Legendre, L. F. J. (2012). Numerical ecology. Elsevier.

Liston, G. E., & Elder, K. (2006). A meteorological distribution system for high-resolution terrestrial modeling (MicroMet). Journal of Hydrometeorology, 7(2), 217-234.

Luebert, F., & Pliscoff, P. (2006). Sinopsis bioclimática y vegetacional de Chile. Editorial Universitaria.

Mansilla, A., Ojeda, J., & Rozzi, R. (2012). Cambio climático global en el contexto de la ecorregión subantártica de Magallanes y la reserva de biósfera Cabo de Hornos. Anales del Instituto de la Patagonia, 40(1), 69-76. https://doi.org/10.4067/S0718-686X2012000100008

Maraun, D., & Widmann, M. (2018). Statistical downscaling and bias correction for climate research. Cambridge University Press.

Markgraf, V., & Huber, U. M. (2010). Late and postglacial vegetation and fire history in Southern Patagonia and Tierra del Fuego. Palaeogeography, Palaeoclimatology, Palaeoecology, 297(2), 351-366. https://doi.org/10.1016/J.PALAEO.2010.08.013

Mayewski, P. A., Meredith, M. P., Summerhayes, C. P., Turner, J., Worby, A., Barrett, P. J., Casassa, G., Bertler, N. A. N., Bracegirdle, T., Naveira Garabato, A. C., Bromwich, D., Campbell, H., Hamilton, G. S., Lyons, W. B., Maasch, K. A., Aoki, S., Xiao, C., & van Ommen, T. (2009). State of the Antarctic and Southern Ocean climate system. Reviews of Geophysics, 47(1), RG1003. https://doi.org/10.1029/2007RG000231

Meier, W. J.-H., Grießinger, J., Hochreuther, P., & Braun, M. H. (2018). An updated multi-temporal glacier inventory for the Patagonian Andes with changes between the Little Ice Age and 2016. Frontiers in Earth Science, 6, 62.

Melkonian, A. K., Willis, M. J., Pritchard, M. E., Rivera, A., Bown, F., & Bernstein, S. A. (2013). Satellite-derived volume loss rates and glacier speeds for the Cordillera Darwin Icefield, Chile. Cryosphere, 7(3), 823-839. https://doi.org/10.5194/tc-7-823-2013

Miteva, V. (2008). Bacteria in Snow and Glacier Ice. In Psychrophiles: from Biodiversity to Biotechnology (pp. 31-50). Springer. https://doi.org/10.1007/978-3-540-74335-4_3

Moorman, M. C., Anderson, C. B., Gutiérrez, A. G., Charlin, R., & Rozzi, R. (2006). Watershed conservation and aquatic benthic macroinvertebrate diversity in the Alberto D’Agostini National Park, Tierra del Fuego, Chile. Anales del Instituto de la Patagonia, 34, 41-58.

Moreno, P. I., Francois, J. P., Moy, C. M., & Villa-Martínez, R. (2010). Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene. Geology, 38(8), 727-730. https://doi.org/10.1130/G30962.1

Mudelsee, M. (2014). Climate time series analysis: classical statistical and bootstrap methods. Springer International Publishing. https://doi.org/10.1007/978-3-319-04450-7

Ohsawa, M. (1990). An Interpretation of Latitudinal Patterns of Forest Limits in South and East Asian Mountains. The Journal of Ecology, 78(2), 326. https://doi.org/10.2307/2261115

Pandas development team, T. (2020, February). pandas-dev/pandas: Pandas. Zenodo. https://doi.org/10.5281/zenodo.3509134

Peterson, B. G., Carl, P., Boudt, K., Bennett, R., Ulrich, J., Zivot, E., Cornilly, D., Hung, E., Lestel, M., & Balkissoon, K. (2018). Package ‘PerformanceAnalytics.’ R Team Cooperation.

Pisano, E. (1977). Fitogeografía de Fuego-Patagonia chilena. I.-Comunidades vegetales entre las latitudes 52 y 56°S. Anales del Instituto de la Patagonia, 8, 121-250

Pisano, E. (1980). Distribución y características de la vegetación del archipiélago del Cabo de Hornos. Anales del Instituto de la Patagonia, 11, 191-224.

Pisano, E. (1981). Bosquejo fitogeográfico de FuegoPatagonia. Anales del Instituto de la Patagonia. 12, 159-171. QGIS Development-Teams. (2020). QGIS Geographic Information System. Open Source Geospatial Foundation Project.

Rozzi, R., Crego, R.D., Contador, T., Schüttler, E., Rosenfeld, S., Mackenzie, R., Barroso, O., Silva-Rodríguez, E.A., Álvarez-Bustos, X., Silva, A., Ramírez, I., Mella, J., Herreros, J., Rendoll-Cárcamo, J., Marambio, J., Ojeda, J., Méndez, F., Moses, K.P., Kennedy, J.H. …. Massardo, F. (2020). Un centinela para el monitoreo del cambio climático y su impacto sobre la biodiversidad en la cumbre austral de América: la nueva red de estudios ecológicos a largo plazo Cabo de Hornos. Anales del Instituto de la Patagonia, 48, 45-81.Rodríguez, E., Morris, C. S., & Belz, J. E. (2006). A Global Assessment of the SRTM Performance. Photogrammetric Engineering & Remote Sensing, 72(3), 249-260. https://doi.org/10.14358/PERS.72.3.249

Rozzi, R. (2018). Cabo de Hornos: Un crisol biogeográfico en la cumbre austral de América. Magallania (Punta Arenas), 46(1), 79-101.

Rozzi, R., & Jiménez, J. (2014). Ornitología Subantártica de Magallanes: Primera Década de Estudios de Aves en el Parque Etnobotánico Omora, Reserva de Biosfera Cabo de Hornos.

Rozzi, R., Massardo, F., Anderson, C. B., Heidinger, K., & Silander Jr, J. A. (2006). Ten principles for biocultural conservation at the southern tip of the Americas: the approach of the Omora Ethnobotanical Park. Ecology and Society, 11(1).

Rozzi, R., Crego, R.D., Contador, T., Schüttler, E., Rosenfeld, S., Mackenzie, R., Barroso, O., Silva-Rodríguez, E.A., Álvarez-Bustos, X., Silva, A., Ramírez, I., Mella, J., Herreros, J., Rendoll-Cárcamo, J., Marambio, J., Ojeda, J., Méndez, F., Moses, K.P., Kennedy, J.H. …. Massardo, F. (2020). Un centinela para el monitoreo del cambio climático y su impacto sobre la biodiversidad en la cumbre austral de América: la nueva red de estudios ecológicos a largo plazo Cabo de Hornos. Anales del Instituto de la Patagonia, 48, 45-81.

Rozzi, R., Armesto, J., Goffinet, B., Buck, W., Massardo, F., Silander, J., Kalin-Arroyo, M., Russell, S., Anderson, C. B., Cavieres, L., & Callicott, J. B. (2008). Changing lenses to assess biodiversity: patterns of species richness in sub-Antarctic plants and implications for global conservation. Frontiers in Ecology and the Environment, 6, 131-137.

Rozzi, R., Armesto, J. J., Gutiérrez, J., Massardo, F., Likens, G., Anderson, C. B., Poole, A., Moses, K., Hargrove, G., Mansilla, A., Kennedy, J. H., Willson, M., Jax, K., Jones, C., Callicott, J. B., & Kalin, M. T. (2012). Integrating ecology and environmental ethics: Earth stewardship in the southern end of the Americas. BioScience, 62, 226-236.

Rydin, H., Jeglum, J. K., & Bennett, K. D. (2013). The biology of peatlands, 2e. Oxford University Press.

Santibáñez, P. A., Kohshima, S., Scheihing, R. A., Silva, R., Jaramillo M, J. I., Labarca P, P. J., & Casassa R, G. (2011). First record of testate amoebae on glaciers and description of a new species Puytoracia jenswendti nov. sp. (Rhizaria, Euglyphida). Acta Protozoologica, 50(1).

Santibañez, P., Kohshima, S., Scheihing, R., Jaramillo, J., Shiraiwa, T., Matoba, S., Kanda, D., Labarca, P., & Casassa, G. (2008). Glacier mass balance interpreted from biological analysis of firn cores in the Chilean lake district. Journal of Glaciology, 54(186), 452–462.

Sato, K., & Inoue, J. (2018). Comparison of Arctic sea ice thickness and snow depth estimates from CFSR with in situ observations. Climate Dynamics, 50(1-2), 289-301. https://doi.org/10.1007/s00382-017-3607-z

Schiermeier, Q. (2010). The real holes in climate science. Nature, 463(7279), 284-287. https://doi.org/10.1038/463284a

Schulzweida, U. (2019, October). CDO User Guide. https://doi.org/10.5281/zenodo.3539275

Srur, A. M., Villalba, R., Rodríguez-Catón, M., Amoroso, M. M., & Marcotti, E. (2018). Climate and Nothofagus pumilio establishment at upper treelines in the Patagonian Andes. Frontiers in Earth Science, 6, 57.

Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, 1535.

Takeuchi, N. (2011). Glacial Ecosistems. In V. Singh, P. Singh, & U. Haritashya (Eds.), Encyclopedia of snow, ice and glaciers (pp. 330-331). Springer.

Takeuchi, N., & Kohshima, S. (2004). A snow algal community on Tyndall Glacier in the Southern Patagonia Icefield, Chile. Arctic, Antarctic, and Alpine Research, 36(1), 92-99.

Thioulouse, J., & Dray, S. (2007). Interactive multivariate data analysis in R with the ade4 and ade4TkGUI packages. Journal of Statistical Software, 22(5), 1-14.

Turetsky, M. R., Benscoter, B., Page, S., Rein, G., van der Werf, G. R., & Watts, A. (2015). Global vulnerability of peatlands to fire and carbon loss. Nature Geoscience, 8(1), 11-14. https://doi.org/10.1038/ngeo2325

Vera, A., Zúñiga-Reinoso, A., & Muñoz-Escobar, C. (2012). Perspectiva histórica sobre la distribución de Andiperla willinki “dragón de la Patagonia” (Plecoptera: Gripopterygidae). Revista Chilena de Entomología, 37, 87-93

Villalba, R., Grosjean, M., & Kiefer, T. (2009). Long-term multi-proxy climate reconstructions and dynamics in South America (LOTRED-SA): State of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology, 281(3-4), 175-179. https://doi.org/10.1016/J.PALAEO.2009.08.007

Wang, C., Graham, R. M., Wang, K., Gerland, S., & Granskog, M. A. (2019). Comparison of ERA5 and ERA-Interim near-surface air temperature, snowfall and precipitation over Arctic sea ice: effects on sea ice thermodynamics and evolution. The Cryosphere, 13(6), 1661-1679.

Wardle, P. (1974). Alpine timberlines. In J. D. Ives & R. G. Barry (Eds.), Arctic and alpine environments (pp. 371-402). Methuen.

Weidemann, S., Sauter, T., Schneider, L., & Schneider, C. (2013). Impact of two conceptual precipitation downscaling schemes on mass-balance modeling of Gran Campo Nevado ice cap, Patagonia. Journal of Glaciology, 59(218), 1106-1116. https://doi.org/10.3189/2013JoG13J046

Weidemann, S., Sauter, T., Kilian, R., Steger, D., Butorovic, N., & Schneider, C. (2018). A 17-year Record of Meteorological Observations Across the Gran Campo Nevado Ice Cap in Southern Patagonia, Chile, Related to Synoptic Weather Types and Climate Modes. Frontiers in Earth Science, 6, 53. https://doi.org/10.3389/feart.2018.00053

Weidemann, S., Arigony-Neto, J., Jaña, R., Netto, G., González, I., Casassa, G., & Schneider, C. (2020). Recent Climatic Mass Balance of the Schiaparelli Glacier at the Monte Sarmiento Massif and Reconstruction of Little Ice Age Climate by Simulating Steady-State Glacier Conditions. Geosciences, 10(7), 272. https://doi.org/10.3390/geosciences10070272

Woodward, F. I., Smith, T. M., & Emanuel, W. R. (1995). A global land primary productivity and phytogeography model. Global Biogeochemical Cycles, 9(4), 471-490.

Artículos más leídos del mismo autor/a

1 2 3 > >>