Variación latitudinal del tamaño corporal de Tegula atra (Lesson, 1830) (Gasterópodo: Trochidae) en aguas someras del sur de Chile
AIP
PDF

Palabras clave

Tamaño corporal, sur de Chile
tegula otra
latitud

Cómo citar

Palacios Subiabre, M., Aldea, C., & Corcoran, D. (2022). Variación latitudinal del tamaño corporal de Tegula atra (Lesson, 1830) (Gasterópodo: Trochidae) en aguas someras del sur de Chile. Anales Del Instituto De La Patagonia, 50. https://doi.org/10.22352/AIP202250006

Resumen

La gran variabilidad de los ambientes marinos en Chile está asociada a la longitud de su costa, la cual está regulada por diversos procesos oceanográficos que perfilan la distribución, abundancia y morfología de las especies marinas. Tegula atra es un gasterópodo marino de gran distribución en el Pacífico sur, cualidad que le permite ser un buen modelo de estudio para evaluar la variación de su tamaño corporal respecto a su distribución latitudinal. Un total de 236 individuos fueron recolectados en siete sitios de muestreo entre 41,6 ° ~ 53,6 °S. La relación entre el peso, la talla (media geométrica) y su distribución latitudinal fue evaluada de acuerdo con regresiones de Pearson y de cuantiles. En relación con la latitud, se observó una correlación positiva y sustancial (Pearson) entre el peso y la talla (p > 0,05) al desplazarse hacia el sur. Los resultados de la regresión de cuantiles reflejaron que tanto la pendiente como el valor R2 son significativos para la latitud con las dos variables analizadas (peso, media geométrica). Entre los factores que afectan al tamaño corporal de T. atra, se sugiere una diferenciación adaptativa de este género a diferentes temperaturas -lo que ya se ha observado en especies antárticas-. Esto revela una interacción entre la latitud, la fertilidad y el suministro de alimento, condición que se refleja en T. atra en la ecorregión subantártica. Sin embargo, el estudio de las zonas intermedias en el sur de Chile y la interacción con otros factores abióticos (por ejemplo, la profundidad) puede dilucidar estas variaciones en el tamaño corporal.

https://doi.org/10.22352/AIP202250006
PDF

Citas

Aldea, C. & Valdovinos, C. (2005). Rockyshore mollusks of the South-Central Chile (36 ° - 38 °S): Taxonomy and key of identification. Gayana, 69 (2): 364-396. http://dx.doi.org/10.4067/S0717-65382005000200014

Avise, J.C. (1992). Molecular population structure and the biogeographic history of a regional fauna: a case study with lessons from conservation biology. Oikos, 63: 62-76. https://doi.org/10.2307/3545516

Avise, J.C., Reeb, C.A. & Saunders, N.C. (1987). Geographic population structure and species differences in mitochondrial DNA of mouthbrooding marine catfishes (Ariidae) and demersal spawning toadfishes (Battrachoididae). Evolution, 41: 991-1002.

Blackburn, T.M., Gaston, K.J. & Loder, N. (1999). Geographic gradients in body size: a clarification of Bergmann’s rule. Diversity and Distributions, 5:165-174. https://doi.org/10.1046/j.1472-4642.1999.00046.x

Blackburn, T.M. & Gasto,n K.J. (1996). Spatial patterns in the body size of bird species in the New World. Oikos 77: 436-446. https://doi.org/10.2307/3545933

Buschmann, A., Vásquez, J., Osorio, P., Reyes, E., Filun, L., Hernández-González, M. & Vega, A. (2004). The effect of water movement, temperature and salinity on abundance and reproductive patterns of Macrocystis spp. (Phaeophyta) at different latitud in Chile. Marine Biology, 145: 849-862. https://doi.org/10.1007/s00227-004-1393-8

Cade, B.S. & Noon, B.R. (2003). A gentle introduction to quantile regression for ecologists. Frontiers in Ecology and the Environment 1: 412-420. https://doi.org/10.1890/1540-9295(2003)001[0412:AGITQR]2.0.CO;2

Cade, B.S. & Richards, J.D. (2001). User manual for Blossom statistical software. Midcontinental Ecological Science Center. U.S. Geological Survey. Fort Collins 124pp.

Carcelles, A. & Williamson, S. (1951). Catálogo de los moluscos marinos de la provincia Magallánica. Revista del Instituto Nacional de Investigación y Ciencias Naturales. Buenos Aires (Argentina), 2: 225-383.

Core Team R. (2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.r-project.org

Da Rocha, R.F. & Silva, R. (2011). Biogeography and connectivity between western South American and Antarctic marine molluscs. Oecologia Australis, 15(1): 111-123. https://doi.org/10.4257/oeco.2011.1501.09

Dawson, M.N. (2001). Phylogeography in coastal marine animals: a solution from California? Journal of Biogeography, 28: 723-736. https://doi.org/10.1046/j.1365-2699.2001.00572.x

Defeo, O. & Cardoso, R.S. (2002). Macroecology of population dynamics and life history traits of the mole crab Emerita brasiliensis in Atlantic sandy beaches of South America. Marine Ecology Progress Series, 239: 169-179. https://doi.org/10.3354/meps239169

Frank, P.W. (1975). Latitudinal variation in life history features of the black turban snail Tegula funebralis (Prosobranchia: Trochidae). Marine Biology, 27:219-223. https://doi.org/10.1007/BF00391630

Gallardo, C.S. (1977). Two modes of development in the morphospecies Crepidula dilatata (Gastropoda: Calyptraeidae) from southern Chile. Marine Biology, 39: 241-251. https://doi.org/10.1007/BF00390998

Garrido, I.A. (2012). Ecología trófica del asteroideo Cosmasterias lurida (Phillips, 1858) en el seno del Reloncaví (Sur de Chile): distribución, abundancia, alimentación y movimiento. Tesis de Grado de Biología Marina, Universidad Austral de Chile, Valdivia. 86 pp.

González, A.V., Beltran, J., Hiriart-Bertrand, L., Flores, V., de Reviers, B., Correa, J.A. & Santelices, B. (2012). Identification of cryptic species in the Lessonia nigrescens complex (Phaeophyceae, Laminariales). Journal of Phycology, 58: 1153-1165. https://doi.org/10.1111/j.1529-8817.2012.01200.x

Häussermann, V. & Försterra, G. (2010). Fauna Marina Bentónica de la Patagonia Chilena Guía de identificación ilustrada. 1a Edición.

Hawkins, B.A & Lawton J.H. (1995). Latitudinal gradients in butterfly body sizes: is there a general pattern?. Oecologia, 102: 31-36. https://doi.org/10.1007/BF00333307

Jackson, J.B., Jung, C.P. & Fortunato, H. (1996). Paciphilia revisited: transisthmian evolution of the Strombina group. In: Jackson J. B. C., Budd A. F., Coates A. G. (Eds.) Evolution and environment in tropical America, University of Chicago Press, Chicago 234-270.

James, A.C., Azevedo, B.R. & Partridge, L. (1995). Cellular basis and developmental timing in a size cline of Drosophila melanogaster. Genetics, 140: 659-666. https://doi.org/10.1093/genetics/140.2.659

Koenker, R. & Machado, J.A. (1999). Goodness of fit and related inference processes for quantile regression. Journal of the American Statistical Association, 94: 1296-1310. https://doi.org/10.2307/2669943

Laptikhovsky, V. (2006). Latitudinal and bathymetric trends in egg size variation: a new look at Thorson’s and Rass’s rules. Marine Ecology, 27: 7-14. https://doi.org/10.1111/j.1439-0485.2006.00077.x

Lardies, M.A. & Castilla, J.C. (2001). Latitudinal variation in the reproductive biology of the commensal crab Pinnaxodes chilensis (Decapoda: Pinnotheridae) along the Chilean coast. Marine Biology, 139: 1125-1133. https://doi.org/10.1007/s002270100661

Lee, H.J. & Boulding, E.G. (2009). Spatial and temporal population genetic structure of four northeastern Pacific littorinid gastropods: the effect of mode of larval development on variation at one mitochondrial and two nuclear DNA markers. Molecular Ecology, 18: 2165-2184. https://doi.org/10.1111/j.1365-294X.2009.04169.x

Linse, K. (1999). Mollusca of the Magellan region. A checklist of the species and their distribution. In: Magellan-Antarctic: Ecosystems that drifted apart. Arntz W. E. and Ríos C. (Eds.). Scientia Marina, 63 (Supl. 1): 399-407. https://doi.org/10.3989/scimar.1999.63s1399

Linse, K., Barnes, D.K.A. & Enderlein, P. (2006). Body size and growth of benthic invertebrates along an Antarctic latitudinal gradient. Deep-Sea Research II, 53: 921-931. https://doi.org/10.1016/j.dsr2.2006.03.006

Lonsdale, D.J & Levinton, J.S. (1985). Latitudinal differentiation in copepod growth: an adaptation to temperature. Ecology, 66: 1397-1407. https://doi.org/10.2307/1938002

Marquet, P.A., Quiñones R.A., Abades, S., Labra, F., Tognelli, M., Arim, M. & Rivadeneira, M. (2005). Scaling and power-laws in ecological systems. The Journal of Experimental Biology, 208: 1749-1769. https://doi.org/10.1242/jeb.01588

Marquet, P.A, Navarrete, S.A & Castilla, J.C. (1990). Scaling population density to body size in rocky intertidal communities. Science 250: 1125-1127. https://doi.org/10.1126/science.250.4984.1125

Marshall, D.J & Keough, M. (2007). The Evolutionary Ecology of Offspring Size in Marine Invertebrates Advances. Marine Biology, 53: 1-60. https://doi.org/10.1016/S0065-2881(07)53001-4

McClain, C.R & Rex, M.A. (2001). The relationship between dissolved oxygen concentration and maximum size in deep-sea turrid gastropods: an application of quantile regression. Marine Biology, 139: 681-685. https://doi.org/10.1007/s002270100617

Miller, W.E. (1991). Body size in North American Lepidoptera as related to geography. Journal of the Lepidopterists Society, 45: 158-168.

Monaco, C.J., Brokordt, K.B. & Gaymer, C.F. (2010). Latitudinal thermal gradient effect on the cost of living of the intertidal porcelain crab Petrolisthes granulosus. Aquatic Biology, 9: 23-33. https://doi.org/10.3354/ab00223

Montiel, A., Quiroga, E. & Gerdes, D. (2011). Diversity and spatial distribution patterns of polychaete assemblages in the Paso Ancho, Straits of Magellan Chile. Continental Shelf Research, 31: 304-314. https://doi.org/10.1016/j.csr.2010.11.010

Montiel, A., & Rozbaczylo, N. (2009). Poliquetos. In: Haussermann & Fórsterra (Eds.) Fauna Marina Bentónica de la Patagonia. Nature in Focus, Santiago, Chile. pp 543-581.

Olabarria, C. & Thurston, M.H. (2003). Latitudinal and bathymetric trends in body size of the deep-sea gastropod Troschelia berniciensis (King). Marine Biology, 143: 723-730. https://doi.org/10.1007/s00227-003-1116-6

Olalla-Tárraga, M.A., Rodríguez, M.A. & Hawkins, B.A. (2006). Broad-scale patterns of body size in squamate reptiles of Europe and North America. Journal of Biogeography 33: 781-793. https://doi.org/10.1111/j.1365-2699.2006.01435.x

Olson, V.A., Davies, R.G., Orme, C.D.L., Thomas, G.H. & others. (2009). Global biogeography and ecology of body size in birds. Ecology Letters, 12: 249-259. https://doi.org/10.1111/j.1461-0248.2009.01281.x

Palacios, M. (2012). Algae. In: Aldea, C. (Eds.) A Biodiversity guide representing the seabeds of Magallanes. Ediciones Fundación CEQUA, Punta Arenas, Chile pp. 49-63.

Peppard, M.C. (1964). Shell Growth and repair in the Gastropod Tegula funebralis. The Veliger 6 (Suppl.): 59-63.

Peters, R.H. (1983). The ecological implications of body size. Cambridge University Press, Cambridge 329 pp.

Reaka, M.L. (1980). Geographic range, life history patterns, and body size in a guild of coral-dwelling mantis shrimps. Evolution 34: 1019-1030.

Reid, D. & Osorio, C. (2000). The shallow-water marine Mollusca of the Estero Elefantes and Laguna San Rafael, southern Chile. Bull. Natural History Museum, London. (Zool.) 66 (2): 109-146.

Rex, M.A., Etter, R.J., Clain, A.J. & Hill, M.S. (1999). Bathymetric patterns of body size in deep-sea gastropods. Evolution 53: 1298-1301. https://doi.org/10.2307/2640833

Ríos, C. & Mutschke, E. (2009). Contribution to the knowledge of Macrocystis pyrifera: bibliographic review of the kelp forests distributed in the Magellan region. Anales del Instituto de la Patagonia, 37(1): 97-102. http://dx.doi.org/10.4067/S0718-686X2009000100009

Rodríguez, M.A., Olalla-Tárraga, M.A. & Hawkins, B.A. (2008). Bergmann’s rule and the geography of mammal body size in the Western Hemisphere. Global Ecology and Biogeography, 17: 274-283. https://doi.org/10.1111/j.1466-8238.2007.00363.x

Roy, K. & Martien, K.K. (2001). Latitudinal distribution of body size in north-eastern Pacific marine bivalves. Journal of Biogeography, 28: 485-493.

Roy, K. (2002). Bathymetry and body size in marine gastropods: a shallow water perspective. Marine Ecology Progress Series, 237: 143-149. https://doi.org/10.3354/meps237143

Sánchez, R., Sepúlveda, R.D., Brante, A. & Cárdenas, L. (2011). Spatial pattern of genetic and morphological diversity in the direct developer Acanthina monodon (Gastropoda: Mollusca). Marine Ecology Progress Series 434: 121-131. https://doi.org/10.3354/meps09184

Salas, A., Díaz, F., Denisse-Re, A., Galindo-Sánchez, C.E., Sánchez-Castrejon, E., González, M., Licea, A., Sanchez-Zamora, A. & Rosas, C. (2014). Preferred Temperature, Thermal Tolerance, and Metabolic response of Tegula regina (Stearns, 1892). Journal of Shellfish Research, 33 (1): 239-246. https://doi.org/10.2983/035.033.0123

Scharf, F.S., Juanes, F. & Sutherland, M. (1998). Inferring ecological relationships from the edges of scatter diagrams: comparison of regression techniques. Ecology 79: 448-460. https://doi.org/10.1890/0012-9658(1998)079[0448:IERFTE]2.0.CO;2

Sepúlveda, R., Jara, C.G. & Gallardo, C. (2012). Morphological analysis of two sympatric ecotypes and predator-induced phenotypic plasticity in Acanthina Monodon (Gastropoda: Muricidae). Journal of Molluscan Studies, 78: 173-178. https://doi.org/10.1093/mollus/eyr058

Silva, M. & Downing, J.A. (1995). CRC handbook of mammalian body masses. CRC Press. New York 359 pp.

Somero, G.N. (2002). Thermal Physiology and Vertical Zonation of Intertidal Animals: Optima, Limits, and Costs of Living. 2002. Integrative and Comparative Biology 42:780-789.

Spalding, M., Fox, H., Allen, G., Davidson, N., Ferdaña, Z., Finlayson, M., Halpern, B., Jorge M., Lombana, A., Lourie, S., Martin, K., McManus, E., Molnar, J., Recchia, C.& Robertson, J. (2007). Marine Ecoregions of the World: A Bioregionalization of Coastal and Shelf Areas. BioScience, 57(7): 573-583. https://doi.org/10.1641/B570707

Spicer, J.I. & Gaston, K.J. (1999). Amphipod gigantism dictated by oxygen availability? Ecology Letters, 2:397-403. https://doi.org/10.1046/j.1461-0248.1999.00105.x

Stanley, S.M. (1986). Population size, extinction and speciation: the fission effect in Neogene Bivalvia. Paleobiology 12: 89-110.

Thorson, G. (1936). The larval development, growth and metabolism of arctic marine bottom invertebrates compared with those of other seas. Meddelelser om Grønland,100: 1-55.

Tomanek, L. (2002). The Heat-Shock Response: Its Variation, Regulation and Ecological Importance in Intertidal Gastropods (genus Tegula). Integrative and Comparative Biology, 42:797-807. https://doi.org/10.1093/icb/42.4.797

Van Voorhies, W.A. (1996). Bergmann size clines: a simple explanation for their occurrence in ectotherms. Evolution, 50:1259-1264.

Vásquez, J.A., Camus, P. & Ojeda, F. (1998). Diversity, structure and functioning of rocky coastal ecosystems in northern Chile. Revista Chilena de Historia Natural 71: 479-499.

Vásquez, J.A. & Buschmann, A. (1997). Herbivore-kelp interactions in Chilean subtidal communities: a review. Revista Chilena de Historia Natural, 70: 41-52.

Vásquez, J.A. (1993). Patrones de distribución de poblaciones submareales de Lessonia trabeculata en el norte de Chile. Facultad de Ciencias del Mar. Universidad Católica del Norte. Coquimbo. Chile. Serie Ocasional 2: 187-211.

Veliz, D. & Vásquez, J.A. (2000). The trochidae family (Mollusca: Gastropoda) in northern Chile: taxonomic and ecological considerations. Revista Chilena de Historia Natural, 73 (4): 757-769. http://dx.doi.org/10.4067/S0716-078X2000000400018

Villegas, M.J., Laudien, J., Sielfeld, W. & Arntz, W.E. (2008). Macrocystis integrifolia and Lessonia trabeculata (Laminariales; Phaeophyceae) kelp habitat structures and associated macrobenthic community off northern Chile. Helgoland Marine Research, 62 (Suppl 1): 33-43. https://doi.org/10.1007/s10152-007-0096-1

Wares, J.P., Gaines, S.D. & Cunningham, C.W. (2001). A comparative study of asymmetric migration events across a marine biogeographic boundary. Evolution, 55: 295-306.

West, G.B., Brown, J.H. & Enquist, B.J. (1997). A general model for the origin of allometric scaling laws in biology. Science, 276:122-126. https://doi.org/10.1126/science.276.5309.122

White, E.P., Ernest, S.K.M., Kerkoff, A.J. & Enquist, B.J. (2007). Relationships between body size and abundance in ecology. Trends in Ecology and Evolution, 22 (6): 323-330. https://doi.org/10.1016/j.tree.2007.03.007

Zaixso, H.E. (2004). Ribbed mussel Aulacomya atra atra (Molina) (Bivalvia: Mytilidae) beds of the San José Gulf (Chubut, Argentina): Diversity and relationships with related facies. Revista de Biología Marina y Oceanografía, 39 (2): 61-78. http://dx.doi.org/10.4067/S0718-19572004000200003.

Licencia Creative Commons
Esta obra está bajo una Licencia Creative Commons Atribución-NoComercial-CompartirIgual 4.0 Internacional.

Descargas

Los datos de descargas todavía no están disponibles.

Métricas

Cargando métricas ...